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Salinity affects a significant portion of arable land and is particularly detrimental for irrigated agriculture, which provides one-
third of the global food supply. Rice (Oryza sativa), the most important food crop, is salt sensitive. The genetic resources for salt
tolerance in rice germplasm exist but are underutilized due to the difficulty in capturing the dynamic nature of physiological
responses to salt stress. The genetic basis of these physiological responses is predicted to be polygenic. In an effort to address this
challenge, we generated temporal imaging data from 378 diverse rice genotypes across 14 d of 90 mM NaCl stress and developed
a statistical model to assess the genetic architecture of dynamic salinity-induced growth responses in rice germplasm. A genomic
region on chromosome 3 was strongly associated with the early growth response and was captured using visible range imaging.
Fluorescence imaging identified four genomic regions linked to salinity-induced fluorescence responses. A region on
chromosome 1 regulates both the fluorescence shift indicative of the longer term ionic stress and the early growth rate
decline during salinity stress. We present, to our knowledge, a new approach to capture the dynamic plant responses to its
environment and elucidate the genetic basis of these responses using a longitudinal genome-wide association model.

Nearly one-third of the 54 million ha of the highly
saline soils in the world are located in South and
Southeast Asia. Rice (Oryza sativa), which is the pri-
mary source of calories and protein for these two re-
gions, is very sensitive to salinity stress, with even
moderate salinity levels known to decrease yields by
50% (Zeng et al., 2002). Projected sea level rise due to
climate change is expected to increase saltwater in-
gress in coastal rice-growing regions of South and
Southeast Asia. Therefore, development of salt-tolerant

rice cultivars is essential to maintain rice productivity
in the salinity-affected regions globally.

Salt tolerance, defined as the ability to maintain
growth and productivity in saline conditions, is a
complex polygenic trait that may be influenced by
distinct physiological mechanisms (Munns et al., 1982;
Munns and Termaat, 1986; Cheeseman, 1988; Munns
and Tester, 2008; Horie et al., 2012; for a comprehen-
sive review of genes involved in salinity tolerance in
rice, see Negrão et al., 2011) At the cellular level, plants
respond to saline conditions in two phases, namely an
osmotic (shoot ion independent) and an ionic stress
phase, which can occur in an overlapping manner with
varying intensity during the course of salinity stress
(Munns and Termaat, 1986; Munns, 2002; Munns and
James, 2003; Munns and Tester, 2008; Horie et al.,
2012). During the osmotic stress phase, which occurs
soon after the onset of salinity, the reduction in ex-
ternal osmotic potential disrupts water uptake and
impedes cell expansion, which, at the whole plant
level, leads to reduced growth rate (Matsuda and
Riazi, 1981; Munns and Passioura, 1984; Rawson and
Munns, 1984; Azaizeh and Steudle, 1991; Fricke
and Peters, 2002; Fricke, 2004; Boursiac et al., 2005). As
salinity stress persists over several days and weeks,
sodium ions (Na+) accumulate to toxic levels, resulting
in cell death and precocious leaf senescence (Lutts and
Bouharmont, 1996; Munns, 2002; Munns and James,
2003; Ghanem et al., 2008). This is typically observed
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during the ionic phase of the salinity response (Munns,
2002; Munns and James, 2003; Munns and Tester,
2008). Plants possess distinct mechanisms to adapt to
these osmotic and ionic stresses that are controlled by a
suite of genes (Apse et al., 1999; Carvajal et al., 1999;
Halfter et al., 2000; Ishitani et al., 2000; Shi et al., 2000;
Zeng and Shannon, 2000; Rus et al., 2001; Berthomieu
et al., 2003; Martínez-Ballesta et al., 2003; Boursiac
et al., 2005, 2008; Ren et al., 2005; Huang et al., 2006;
Davenport et al., 2007; Obata et al., 2007; Székely et al.,
2008; Horie et al., 2011; Rivandi et al., 2011; Asano
et al., 2012; Munns et al., 2012; Latz et al., 2013;
Schmidt et al., 2013; Campo et al., 2014; Choi et al.,
2014; Liu et al., 2014). The genetic basis of temporal
adaptive responses to salinity stress remains to be ex-
plored in rice and other crops. This is primarily due to
challenges in capturing the dynamic physiological re-
sponses to salinity for a large number of genotypes in a
nondestructive manner. Manual phenotyping to detect
incremental changes in growth rate during the os-
motic stress and slight shifts in leaf color due to ionic
stress is difficult to quantify for a large number of
genotypes.
In rice, at least one major quantitative trait loci

(QTL; saltol) for salinity tolerance has been character-
ized based on end point measurements of biomass,
senescence/injury, and Na+ and K+ concentrations
(Bonilla et al., 2002; Lin et al., 2004; Thomson et al.,
2010). SHOOT K+ CONTENT1 (SKC1) is the causa-
tive gene underlying the saltol region. SKC1 encodes
a Na+-selective high-affinity potassium transporter
that regulates Na+/K+ homeostasis during salinity
stress (Ren et al., 2005). High levels of Na+ displace cel-
lular K+, an essential element for several enzymatic
reactions and physiological processes (Gierth and
Mäser, 2007). The ability to maintain cellular K+ levels
during salinity through the action of Na+-selective po-
tassium transporters or Na+/H+ antiporters is a well-
characterized tolerance mechanism in cereals including
rice (Ren et al., 2005; Sunarpi et al., 2005; Huang
et al., 2006; Møller et al., 2009; Mian et al., 2011; Munns
et al., 2012).
Numerous studies have utilized conventional link-

age mapping to identify QTL for morphological and
physiological responses to salinity in rice using dis-
crete end point measurements (Bonilla et al., 2002; Lin
et al., 2004; Ren et al., 2005; Negrão et al., 2011; Wang
et al., 2012). However, the physiological adaptation to
saline conditions is a complex continuous process that
develops over time. While some accessions will exhibit
similar end point phenotypic values, the genetic and
physiological mechanisms giving rise to the similar
phenotypes may be very different and the growth
trajectories throughout the experiment may be distinct.
Although single time point studies have yielded im-
portant information regarding the genetic basis of sa-
linity tolerance, such approaches are too simple to
reveal the genetic architecture of stress adaptation.
With the advent of high-throughput image-based
phenotyping platforms, it is now feasible to quantify

dynamic responses during the stress treatment for a
large number of genotypes (Berger et al., 2010;
Golzarian et al., 2011; Chen et al., 2014; Honsdorf
et al., 2014).

Image-based phenotyping has been combined with
genome-wide association studies (GWAS) and linkage
mapping to examine the genetic basis of complex de-
velopmental processes (Busemeyer et al., 2013; Moore
et al., 2013; Topp et al., 2013; Slovak et al., 2014;
Würschum et al., 2014; Yang et al., 2014; Bac-Molenaar
et al., 2015). Moreover, the introduction of the time
axis provides a better understanding of the physio-
logical processes underlying complex stress and de-
velopmental responses compared with single end
point measurements (Zhang et al., 2012; Moore et al.,
2013; Brown et al., 2014; Chen et al., 2014; Slovak et al.,
2014; Bac-Molenaar et al., 2015). However, to date, no
studies have implemented an association mapping
approach using image-derived phenotypes to address
the genetic basis of dynamic stress responses in plants.
Image-based phenotyping offers several advantages
over conventional phenotyping: (1) quantitative mea-
surements can be recorded over discrete time points to
capture morphological and physiological responses in
a nondestructive manner, and (2) the use of various
types of spectral imaging address phenotypes that are
not detectable to the human eye such as chlorophyll
fluorescence and leaf water content. Integrating dy-
namic phenotypic data and association mapping has
the potential to query genetic diversity across hun-
dreds of accessions for complex traits and provides
much higher resolution compared with conventional
linkage mapping. Here, we explored the dynamic growth
and chlorophyll responses to salinity of a diverse set of
rice accessions using high-throughput visible and flu-
orescence imaging. To assess the genetic basis of plant
growth in saline conditions, a logistic model was used
to describe the temporal growth responses and was
incorporated into the statistical framework necessary
for association mapping. Coupled with temporal flu-
orescence imaging, we present, to our knowledge, new
insights into the genetic architecture of osmotic and
ionic responses during salinity stress in rice.

RESULTS

Capturing Osmotic and Ionic Components of Salinity
Stress Using High-Throughput Imaging

To assess the ionic and osmotic components of sa-
linity response in rice, a diversity panel consisting of
373 rice lines was exposed to 90 mM NaCl during the
early tillering stage (Supplemental Figs. S1A and S2).
Morphological and physiological responses were moni-
tored over a period of 14 d after 90 mM NaCl treat-
ment using nondestructive imaging (Supplemental
Fig. S1B). Two types of imaging systems, red, green,
blue (RGB)/visible spectrum and fluorescence (FLUO),
were utilized to address osmotic and ionic components
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of salinity stress, respectively. RGB/visible imaging
allows growth and other morphological parameters
to be quantified in a nondestructive manner and has
been used to monitor growth shortly (1–10 d) after
the onset of salinity to address primarily the shoot
ion-independent phase (osmotic phase) of salinity
stress (Rajendran et al., 2009). The effects of salinity
on chlorophyll and other fluorophores can be moni-
tored by detecting changes in the color or intensity of
pixels, thus providing important information re-
garding the ionic component of salinity stress (Berger
et al., 2010).

We developed an open-source image processing
software named Image Harvest to extract plant pixels
from images and quantify fluorescence color ranges
(“Materials and Methods;” Supplemental Fig. S1C).
Image Harvest is publically available for download
and is optimized for processing high-volume plant
image data using parallel computing. The data set
generated for the current study consisted of 142,671
RGB images and 95,118 fluorescence images, which
were processed using LemnaGrid and Image Harvest,
respectively. The entire data set is available on iPlant
(http://mirrors.iplantcollaborative.org/browse/iplant/
home/shared/walia_rice_salt). The resulting output
consists of temporal data for 97 digital (pixel-based)
traits, seven of which are used to describe plant
morphology and growth traits, while the remaining
90 traits are used to describe fluorescence responses
(Supplemental Table S1).

Assessing Salinity-Induced Growth Responses in the Rice
Diversity Panel

To determine how accurately the biomass-related,
image-derived growth metrics represented actual bio-
mass and total shoot area, plants from 72 accessions
were harvested on the last day of the imaging exper-
iment, fresh and dry mass was recorded, and total
plant area was directly measured using a leaf area
meter (LI-3100C; LI-COR). Correlation analysis was
done using seven biomass-related metrics and three
manual measurements. Of the seven biomass-related
metrics derived from color images, projected shoot
area (PSA), which is defined as the sum of all pixels
from all three RGB images, showed the highest corre-
lation with all manual biomass-related measurements
(Supplemental Table S2). As expected, PSA showed
the strongest positive correlation with total plant area
as well (r2 = 0.96, P , 0.001, n = 72; Fig. 1A). Shoot
fresh and dry weight showed a strong positive corre-
lation with PSA, although at a slightly lower correla-
tion compared with total plant area (r2 = 0.95, P ,
0.001 for both shoot fresh and dry weight; Fig. 1, B and
C, respectively). A significant difference in PSA was
detected between treatments using a one-way blocked
ANOVA (where accession is considered as a block)
beginning at day 4 after 90 mM NaCl (P , 0.0028; Fig.
1D). These results indicate that PSA is an accurate and

sensitive metric for assessing plant biomass accumu-
lation in response to salinity.

To determine whether there were any differences in
the salinity response among the five subpopulations as
classified by Zhao et al. (2011), we calculated the
salinity-induced growth response as the ratio of PSA in
salt-treated plants over control plants. Aromatic lines
were excluded due to small number of accessions. For
each subpopulation, the salinity-induced growth re-
sponse was modeled across all time points with a de-
creasing logistic curve. Therefore, on day 1 of salt
treatment, the growth response is 1, and it begins to
decrease after the onset of salinity stress and eventu-
ally flattens out as vegetative growth declines and
plants transition to reproductive phase. Pairwise com-
parisons of growth response models revealed signifi-
cant differences between several subpopulations
(Table I). Notably, the tropical japonica subpopulation
showed a significantly lower growth reduction in re-
sponse to salinity when compared with other sub-
populations, suggesting that this varietal group may
be an important source for osmotic stress tolerance
response during early stages of salinity stress (Fig. 1E).
The admix and aus subpopulations showed the most
severe reduction in growth. Aus accessions displayed
the earliest reduction in PSA, with a significant dif-
ference observed 4 d after 90 mM salt application (P ,
6.18 3 10–5). While for the admix subpopulation, sig-
nificant differences between treatments were observed
beginning 7 d after the onset of 90 mM salinity (P ,
1.31 3 10–6).

Assessing Salinity-Induced Chlorophyll Responses

To assess the effects of salinity stress on leaf senes-
cence, plants were imaged in a separate fluorescence-
imaging chamber. Because the available functions are
limited in LemnaGrid software, we developed an
open-source processing software called Image Harvest
to extract several spectral metrics from the 95,118 fluo-
rescence images. Color ranges that may be indicative
of salinity-induced chlorophyll responses were identi-
fied by utilizing an ad hoc image segmentation strat-
egy that classified the range of colors present in all
fluorescence images into 90 classes of color ranges.
Based on our pixel classification strategy, we identified
32 color classes that showed significant differences
between treatments after three or more days of salt
stress across all 373 accessions (P , 0.00056; Fig. 2A).
No difference between treatments was observed for
any of the 32 color classes before the application of
NaCl. Canonical correlation analysis between pixel
classes within each time point showed strong correla-
tions between color classes (Supplemental Data Sets S1
and S2). As senescence progresses, the color proper-
ties of the fluorescence signal emitted from stressed
tissue will change over time. Because our ad hoc seg-
mentation approach classifies pixels into discrete color
classes, it is likely that over time, pixels that represent
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stressed tissue will change membership between classes
with similar color properties. Therefore, to examine the
relationship between color classes across time points,
we performed hierarchal clustering analysis (HCA)
using the mean temporal trend for each color class
across all 373 accessions for each treatment. No clear
distinction between treatments could be observed

from hierarchal clustering. Rather, clustering seemed
to be driven largely by the behavior of color classes
over time (Fig. 2B). If fluorescence signals were influ-
enced only by salinity stress, one would expect clusters
to be formed based on treatment. These results suggest
that developmental processes likely influence the fluo-
rescence signals. However, the significant differences

Figure 1. Salinity-induced growth responses in a rice diversity panel. A to C, Relationship between PSA and conventional
biomass metrics. Pearson correlation analyses were performed between PSA and shoot area (A), shoot fresh mass (B), and shoot
dry mass (C). D, Comparisons of PSA between treatments at each of the 18 d of imaging. Differences between treatments at
each time point were determined using a one-way blocked ANOVA, where accession is considered as a block (P , 0.0027).
E, Comparison of salinity-induced growth response models between each of the five subpopulations defined by Zhao et al.
(2011). The salinity-induced growth response was modeled with a decreasing logistic curve, and pairwise comparisons were
made between each subpopulation. Aromatic accessions were excluded due to low n. Mean growth responses for each
subpopulation are denoted by solid lines, while the SE for each subpopulation is indicated by shadows. TRJ, Tropical japonica;
TEJ, temperate japonica; IND, indica; ADM, admix.

Table I. Comparison of salinity-induced growth response models between subpopulations

The mean growth response was calculated for each subpopulation and fitted to a decreasing logistic
curve. Aromatic accessions were omitted due to low n. Subpopulations with the same letter indicate no
significant differences (P , 10–4). Asym, Horizontal asymptote; xmid, value of x at the inflection point of
the curve; scal, rate coefficient; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion;
TeJ, temperate japonica; TrJ, tropical japonica.

Subpopulation Asym xmid scal AIC BIC logLik P . 1024

Admix 0.997 32.4 26.66 23,560.161 23,536.05 1,785.08 A
Aus 0.999 28.9 24.82 24,015.505 23,991.30 2,012.75 A, B
Indica 0.979 30.0 25.14 25,152.778 25,126.87 2,581.39 A
TeJ 0.982 28.7 24.21 26,093.456 26,066.51 3,051.73 B
TrJ 0.983 30.8 24.49 25,465.48 25,439.12 2,737.74
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observed between treatments suggest that the onset of
salinity may affect the timing or magnitude of these
signals.

Significant differences between treatments were
generally observed during the later time points, with
the majority of color classes displaying significant
differences after day 11 of 90 mM NaCl (Fig. 2A).
However, color classes that displayed significant dif-
ferences during the early stages of salinity stress tended
to populate cluster 1. For instance, at 7 d after 90 mM

NaCl, five of the seven color classes that displayed sig-
nificant differences between treatments were members

of cluster 1. This suggests that fluorescence responses
represented by cluster 1 may be important digital markers
for monitoring the early effects of salinity stress on chlo-
rophyll responses in rice.

Development of Model for Association Analysis of
Longitudinal Salinity-Induced Growth Responses

Because PSA was most strongly correlated with con-
ventional biomass-related measurements and displayed
significant differences between treatments during

Figure 2. The development of image-
based fluorescence traits for monitor-
ing chlorophyll responses to salinity.
A, Salinity-responsive color classes
were identified through comparisons
between treatments at each time
point via one-way ANOVA. Color
classes were considered to be respon-
sive to saline conditions if significant
differences between treatments were
observed in 3 or more days of
90 mM NaCl stress (P , 0.00056).
B, Identification of color classes
exhibiting similar trends over 14 d of
90 mM NaCl. HCA with complete
linkage was performed using the
mean value in each treatment for
each color class. The six clusters are
depicted to the right of the dendro-
gram. Labels in red indicate mean
response in saline conditions, while
those in black indicate control con-
ditions. The right section summa-
rizes the temporal trend captured
by each cluster. The mean values
for each color class were scaled
and centered prior to clustering, so
that the mean is 0 and variance is 1,
and are represented on the y axis.
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the early phase of salt treatment, we sought to iden-
tify genetic loci associated with the salinity-induced
growth response (defined here as the square root-
transformed ratio of the PSA of plants under salt
stress over that of plants in control conditions) of
360 rice accessions for which phenotypic and genetic
information was available (Famoso et al., 2011; Zhao
et al., 2011). Briefly, for each accession and single
nucleotide polymorphism (SNP), the growth response
over 18 d is fitted with a decreasing logistic curve for
each genotype. To perform statistical inference, the
kinship matrix between lines is used to account for
the population structure of the diversity panel and a
first-order autoregressive covariance structure is
used to account for the dependency between time
points. For each SNP, a likelihood ratio test is carried
out on whether the growth response curves are the
same for the two genotypes. The model accounts for

both genetic relationships between accessions due to
rice subpopulation structure and the inherent non-
independent nature of daily observations.

The longitudinal growth response model was com-
pared to a conventional mixed model in which the
response ratio at each individual time point was used
as the phenotypic variable. While several peaks were
identified with both methods, we observed a consid-
erably higher number of significant QTL and consid-
erable lower P values with the longitudinal model. For
instance, a total of 115 highly significant SNPs, which
corresponds to 55 QTL, were identified when the
longitudinal model was used (P , 10–8; Fig. 3A;
Supplemental Data Set S3). By contrast, the maximum
number of significant QTL identified at only one time
point was 26 when the segmented model was used
(P , 10–4; Fig. 3A; Supplemental Data Set S4). Though
the number of significant SNPs and the number of loci

Figure 3. Examining the genetic ar-
chitecture of salinity-induced growth
responses using conventional mixed-
model and logistic growth response
association analysis. A, Comparison
of conventional mixed-model asso-
ciation mapping approach with lo-
gistic growth response association
mapping approach. A conventional
association mapping approach was
performed at each time point using
the salinity-induced growth response
as a phenotypic measure. With the
mixed-model approach, an SNP was
determined to be significant if P ,
10–4, while a threshold of P , 10–8

was used for the logistic growth re-
sponse model. Significant SNPs within
a 200-kb window were combined
and considered as a single QTL.
L, Logistic growth response model.
B, Manhattan plot for the logistic
growth response association analysis.
The red horizontal line indicates a
significance threshold of P , 10–8.
C, Comparison of growth response
trajectories between allelic groups
for the significant association ob-
served at approximately 16.3 Mb on
chromosome 3. A indicates the
major allele (frequency, 0.68), and
G indicates the minor allele (fre-
quency, 0.32). D, Growth trajec-
tories of major and minor allele
accessions for the signal observed
at approximately 25 Mb on chro-
mosome 1. T indicates the major
allele (frequency, 0.79), and C indi-
cates the minor allele (frequency,
0.21).
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are not proportional, these results indicate that the
collective analysis of multiple time points significantly
improved the ability to identify loci associated with
complex polygenic traits such as salinity-induced growth
responses.

Genetic Architecture of Salinity-Induced Temporal
Growth Response

Our genetic association analysis using the longitu-
dinal model identified several highly significant peaks
in close proximity to genes with putative roles in salt
tolerance and or ion homeostasis in rice and other
species based on published literature. A highly significant
cluster of SNPs was located at approximately 16.3 Mb on
chromosome 3 (id3008139; P, 1.113 10–16; Fig. 3B). This
region was identified with both the longitudinal growth
response and mixed-model genome-wide association
(GWA) methods. The large peak on chromosome 3 is
populated by 10 highly significant SNPs converging
on an approximately 240-kb region and includes 89
gene models based on the Michigan State University
Rice Annotation Project Release 7 (Supplemental Data
Set S3). We found a gene within a 200-kb window
surrounding the most significant SNP (id3008139) on
chromosome 3 that encodes a putative Shaker family
inward-rectifying potassium channel (POTASSIUM
TRANSPORTER1; LOC_Os03g28120) gene (Supple-
mental Table S3). These K+ channels mediate cellular
potassium uptake and have been shown to increase
salinity tolerance via lowered Na+-to-K+ ratios in
yeast (Saccharomyces cerevisiae) and rice (Obata et al.,
2007). The accessions with the minor allele at this locus
displayed a greater reduction in plant growth in
response to saline conditions when compared with
the major allele genotypes (Fig. 3C). The minor allele
was represented at a greater proportion in the tem-
perate japonica, aus, and admix subpopulations, with
approximately 77%, 36%, and 46% of accessions re-
taining the allele, respectively, suggesting that salt
sensitivity associated with this locus is present in
multiple subpopulations.

On chromosome 1, a cluster of highly significant SNPs
was detected around approximately 25 Mb (id1014913;
P, 3.183 10–11). The minor allele at SNP id1014913 was
significantly underrepresented in the japonica varietal
groups, with no tropical japonica accessions and only a
single temperate japonica variety possessing the minor al-
lele, suggesting that this locus may be fixed between
indica and japonica subspecies. In general, the accessions
with the minor allele at id1014913 displayed a greater
reduction in growth in response to salinity when com-
pared with the major allele group, with a slight differ-
ence observed as early as 4 d after reaching the 90 mM

NaCl and progressively greater difference during later
time points (Fig. 3D). GWAS conducted with leaf Na+

content showed a minor peak at approximately 30 Mb,
suggesting that this 5-Mb region on chromosome 1 may
influence both growth as well as Na+ ion homeostasis

(id1018154, 30.2 Mb, P , 8.44 3 10–5; Supplemental Fig.
S3A). Varieties with the major allele at id1014913 had
higher Na+ content and Na+-to-K+ ratio, as well as lower
K+ content (P , 0.001; Supplemental Fig. S4, A and B).
These results suggest that the mechanism underlying the
more tolerant response observed in the major allelic
group might be independent of ion homeostasis or ac-
cession from this allelic group may be able to tolerate
higher cellular Na+ content without detrimental effects
on growth.

Genetic Architecture of Salinity-Induced
Chlorophyll Responses

To identify loci associated with salinity-induced chlo-
rophyll responses, association mapping was performed
at each time point individually using a conventional
mixed model for each of the 32 salinity-responsive
color classes (those with P , 0.00056). For each color
class and accession, we calculated the salinity re-
sponse, which is defined as the percentage of total
pixels from two side-view images accounted for by
the color class in saline conditions minus the percent-
age of total pixels accounted by the class in control
conditions. In total, four classes showed significant
associations at one or more time points throughout
the experiment (P , 1.0 3 10–7; Fig. 4A; Supplemental
Figs. S5–S18; Supplemental Data Set S5). Highly sig-
nificant signals were detected on chromosomes 1, 3, 6,
and 10 for color classes 21, 31, 41, and 52 at multiple
time points. HCA of color classes in control and saline
conditions revealed strong similarities in the temporal
behavior of color classes 31, 41, and 52 (Supplemental
Figs. S19 and S20). Interestingly, HCA showed a clear
separation between treatments for these color classes
(Fig. 2B). The salinity response of classes 31, 41, and 52
were tightly grouped in cluster 5, while classes 41 and
52 displayed similar behavior in control conditions.
These results indicate that these fluorescence-based
metrics are measuring similar phenotypic responses,
which may explain the overlapping genomic regions
associated with these metrics.

The most significant association was observed on
day 14 after 90 mM NaCl for class 41 (P , 1.14 3 10–14;
id1015984). The corresponding SNP was located at ap-
proximately 27.6 Mb on chromosome 1. Notably, this
region was also associated with several other metrics at
later time points during the experiment. For instance, the
earliest significant signal for class 21 localized to this
same region on chromosome 1 and was detected only on
day 2 after 90 mM NaCl. However, significant associa-
tions were not observed again in this region until day 5
after 90 mM NaCl (class 52; P , 9.91 3 10–9; id1015991).

DISCUSSION

Excess soil sodium reduces plant growth through
osmotic and ionic effects. Shortly after exposure to
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Figure 4. Examining the genetic architecture
of salinity-induced fluorescence responses.
A, Summary of the significant signals detected
for color classes 21, 31, 41, and 52 at each
time point after 90 mM NaCl. The x axis
indicates the number of days after 90 mM

NaCl application, while the y axis shows the
number of SNPs with P , 10–7 that were
detected with the conventional mixed-model
GWA approach. B to J, Genome-wide P values
for each fluorescent color class exhibiting
significant genetic associations. The red hori-
zontal line indicates a significance threshold
of P, 10–7. The corresponding color class and
day after 90 mM NaCl is given in the title
above each plot.
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excess Na+ (before Na+ accumulates in the cell), the
osmotic potential outside the cell is reduced, which
impairs cell expansion at the cellular level and disrupts
plant-water relations, carbon assimilation, and tran-
spiration at the plant level. In time, Na+ accumulates in
the cytoplasm to toxic levels, resulting in cell death
and senescence. The temporal nature of excess Na+ on
plant growth adds an additional level of complexity
and complicates the study of physiological mecha-
nisms, conferring tolerance and the underlying genetic
basis of these polygenic traits.

When quantifying these dynamic processes, the
choice of a sampling time point for end point mea-
surements is critical for detecting variance for the trait
of interest. When evaluating large diversity panels for
a given trait, determining the appropriate time point to
sample is very difficult, because such germplasm col-
lections are designed to capture a large portion of the
genetic diversity in a species and should exhibit a wide
range of phenotypic values. Therefore, sampling at
only a single time point for the trait of interest may
yield a significant underrepresentation of the variance
for the trait in the population. The quantification of the
trait across many time points, which, in some in-
stances, may be laborious and unfeasible, eliminates
many of the pitfalls associated with single end point
measurements and adds another dimension that may
help dissect and further elucidate the complex bio-
logical processes underlying the phenotype. However,
with the advent of high-throughput image-based
phenomics platforms, the quantification of mor-
phological and physiological traits across multiple
time points is expected to become routine for many
laboratories.

Recent studies by Moore et al. (2013), Yang et al.
(2014), and Würschum et al. (2014) utilized image-
based phenomics to identify QTL involved with tem-
poral developmental dynamics in Arabidopsis, rice,
and triticale (3 Triticosecale), respectively (Moore et al.,
2013; Würschum et al., 2014; Yang et al., 2014). Genetic
analysis conducted at discrete time points identified
several time-specific QTL that partially influence the
final phenotype but would only be detected at a spe-
cific time point. In this study, a similar univariate as-
sociation analysis was performed at each time point
for the 32 fluorescence color classes. The significant
signals identified from fluorescence imaging displayed
a high degree of temporal dynamics. For instance, a
region localized to approximately 27.6 Mb on chro-
mosome 1 displayed significant associations in both
the early and later time points of the experiment, with
the earliest significant signal in this region being
detected on day 2 after 90 mM NaCl for class 21, but
were not observed again in this region until day 5
(class 52; 9.91 3 10–9; id1015991). While on the final
day of the experiment, significant associations were
detected only for classes 41 and 31. The presence of
these signals at discontinuous intervals across time
points suggests that these loci may influence the pro-
cesses that give rise to the fluorescence phenotype and

would have been missed if fluorescence responses
were measured at a single time point. The inclusion
of multiple time points provides additional insight
into the genetic architecture underlying dynamic
fluorescence responses.

The presence of favorable alleles in close prox-
imity provides an opportunity to utilize this region
for breeding programs. Several significant associa-
tions were identified for growth response, chloro-
phyll health, and leaf Na+ content in a region spanning
approximately 5 Mb on chromosome 1 (approximately
25–30 Mb). This overlap among multiple traits is sup-
ported by canonical correlation analysis of multiple
traits derived from image-based and conventional
phenotyping (Supplemental Data Set S2). Class 41
showed a strong negative correlation (r2 = –0.50 at day
12 after 90 mM salt application) with growth (PSA)
reduction during salinity, indicating that lines exhib-
iting a more tolerant growth response also exhibited
reduced senescence (Supplemental Data Set S2). No
significant/strong correlations were observed for
image-based traits and leaf ion content. Our results
suggest that this 5-Mb region on chromosome 1 may
influence both growth and senescence during sa-
linity and may serve as an important source of ge-
netic diversity for development of salt-tolerant rice
varieties that are able to maintain growth and
minimize senescence in saline conditions. Interest-
ingly, several other studies have identified QTL
associated with seedling survival, Na+ uptake and
Na+-to-K+ ratio, chlorophyll content, and ion homeo-
stasis spanning this region on chromosome 1 (Koyama
et al., 2001; Lin et al., 2004; Thomson et al., 2010). These
studies were conducted during the early vegetative
growth stage of rice using a similar NaCl concentration
as this study and support the conclusion that these
QTL may regulate aspects of salinity tolerance during
the early tillering stage in rice. While plants have dis-
tinct mechanisms to respond at the cellular level to the
osmotic and ionic effects of salinity, salt tolerance,
defined as the ability to maintain growth in saline
conditions, may be the result of tolerant ionic or
osmotic responses or a combination of both. However,
dissecting the precise physiological response mecha-
nisms (osmotic or ionic) underlying these loci requires
further experimentation.

Functional data analysis allows complex longitudi-
nal phenotypic data to be reduced to a single mathe-
matic function with a limited set of parameters that
fully capture and describe the dynamics of biological
processes (Paine et al., 2012). This approach simplifies
phenotypic comparisons between individuals across
multiple time points and can be used to accurately
predict future outcomes. Time series data sets derived
from image-based phenotyping have been combined
with functional data analysis to examine shoot and
root growth in response to various environmental
conditions (Walter et al., 2002; van der Weele et al.,
2003; Chen et al., 2014; Poiré et al., 2014; Bac-Molenaar
et al., 2015). Functional data analysis can be combined
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with conventional genetic analysis such as linkage
mapping and GWAS to identify loci that may be
regulating dynamic processes (Cui et al., 2006; Wu
and Lin, 2006; He et al., 2010; Das et al., 2011;
Bac-Molenaar et al., 2015).
In our experiments, the temporal and polygenic

nature of plant salinity responses required the devel-
opment of unique statistical approaches that combine
information across time points to identify loci with
minor effects that regulate the adaptation of growth to
saline conditions. In this study, we have leveraged
unique image processing software and longitudinal
GWA methods to examine the genetic architecture of
salinity-induced growth responses in rice. The salinity-
induced growth response GWA model greatly in-
creased the ability to detect SNPs with minor effects
compared with the conventional mixed-model ap-
proach. A highly significant cluster of SNPs was lo-
cated at approximately 16.3 Mb on chromosome 3
(id3008139; P = 1.11 3 10–16) and was identified with
both the longitudinal growth response and mixed-
model GWA methods. However, additional highly
significant signals that impacted growth, senescence,
and Na+ content were detected only with the longitu-
dinal model. Similar power gains for detecting genetic
associations from longitudinal phenotypes have been
reported by Xu et al. (2014) and Wu and Lin (2006).
However, to date, no studies have leveraged longitu-
dinal genetic algorithms for large-scale association
studies of image-based data from plants. Our results
suggest that longitudinal phenotypes can provide an
advantage over typical cross-sectional (i.e. end point)
phenotypic data for studying the genetic architecture
of complex abiotic stress responses in plants. This
study highlights the potential of these new technolo-
gies and provides a framework for future studies to
integrate next-generation phenotyping technology
with association mapping to understand the genetic
architecture of complex polygenic traits such as salin-
ity tolerance.

MATERIALS AND METHODS

Greenhouse Conditions and Salt Treatment

Seeds from 373 genotypes from the rice (Oryza sativa) diversity panel were
surface sterilized with fungicide, thiram, and germinated on moist paper
towels in plastic boxes for 3 d (Famoso et al., 2011; Zhao et al., 2011). Three
uniformly germinated seeds of each genotype were transplanted to pots (150-mm
diameter 3 200-mm height) filled with 2.6 kg of UC Mix and placed into
square containers to allow for water to collect. Plants were thinned to one
seedling per pot 6 d after transplanting (DAT). For the first 7 DAT, each pot
was watered daily with approximately 150 mL from the top of the pot. Over
the course of the three experiments, the greenhouse temperatures during the
day averaged 28.8°C (62.02°C, SD) and 26.0°C (61.01°C, SD) at night. Relative
humidity was maintained at 63.4% (69.04%, SD) during the day and 69.7%
(61.73%, SD) at night (Rotation Atomizer Defensor ABS3, Condair).

Eight DAT, each pot was watered to a uniform weight so that approxi-
mately 600 mL of water was maintained in the soil. For the salt-stressed plants,
100 mL of NaCl solution (270 mM NaCl:9.9 mM CaClb) was applied to the
square dish, and small holes in the bottom of the pots allowed for the infil-
tration of salt into the soil through capillary action. Salt treatment was applied

in two steps of 45 mM to reach a final concentration of 90 mM at 10 and 13 DAT
(Supplemental Fig. S1A). Control plants received 100 mL of water on days 10
and 13 (Supplemental Fig. S2).

The experiment involved two Smarthouses that were used consecutively for
three periods, the periods forming blocks. In each Smarthouse, 432 pots were
situated in 24 lanes3 18 positions. A split-plot design was employed with two
consecutive pots having the same genotype, but with the two different salt
treatments randomly assigned to them. For each period, a blocked, partially
replicated design was used to allocate the 378 genotypes to the 432 pairs of
pots in the two Smarthouses and was generated using DiGGer, a package for
the R statistical computing environment (Coombes, 2009; R Core Team, 2014).
There were five check genotypes that were always included in a Smarthouse
and 373 genotypes, of which 49 were duplicated in a period and the remaining
324 were unreplicated. The duplicated genotypes differed between periods so
that 147 genotypes were duplicated in total. The entire data set of RGB
and FLUO images can be accessed through the iPlant Collaborative
(http://mirrors.iplantcollaborative.org/browse/iplant/home/shared/walia_
rice_salt).

RGB/Visible Spectrum Image Acquisition and Processing

Plant imaging was initiated 2 d before the first salt application (8 DAT) to
provide a baseline for the determination of growth rate. To assess plant
growth and morphological traits, plants were imaged in an imaging chamber
using a 5-megapixel visible/RGB camera (Basler Pilot piA2400-12gc;
Supplemental Fig. S1C). Lighting conditions, plant positioning, and camera
settings were fixed throughout the experiment. Plants were imaged for
14 d after the final salt application (until 27 DAT). For each plant, two side-
view images, in which the pot was rotated 90°, and a single top-view image
were acquired daily.

The 142,671 color (RGB) images were processed in LemnaGrid (LemnaTec)
to remove nonplant pixels from images. RGB processing consisted of two main
steps: (1) color classification for object extraction and (2) noise reduction
(Supplemental Fig. S21). To extract plant pixels from the background, the
colors of the image were assigned to object (plant) and background (nonplant)
color classes (Supplemental Fig. S22). Briefly, a set of predefined colors was
selected manually to represent the range of colors present in shoot tissues. For
each image, pixels are assigned to color classes using the nearest neighbor
method. The nearest neighbor method searches in a set of predefined colors
to find the most similar (nearest neighbor), defined as the smallest Euclidean
distance, for any given pixel. Pixels are then assigned membership to the most
similar predefined colors. Nonplant pixels were further removed from the
processed images using a series of erosion and dilation steps. The LemnaGrid
devices used for processing RGB images and corresponding Image Harvest/
OpenCV functions are listed in Supplemental Table S4. Seven traits were
derived from RGB images and were used to describe plant growth
(Supplemental Table S1). To determine the effects of salinity treatment on each
trait, a one-way ANOVA was performed at each individual time point, where
treatment was considered as a fixed effect and accession was considered as a
random effect. Raw P values were adjusted using a Bonferroni correction of
a = 0.05, which corresponds to a raw P value , 0.0028.

Fluorescence Image Acquisition and Processing

To assess the effects of salinity stress on chlorophyll content or leaf se-
nescence, plants were imaged in a separate fluorescence-imaging chamber
illuminated with a constant blue light (400–500 nm). Fluorescence images were
captured using a 1.4-megapixel camera (Basler Scout scA1400-17gc) with a
high-pass filter, which captures steady-state chlorophyll fluorescence from 500
to 700 nm. To prevent the detection of fluorescence signals from algae, only
images captured from two side-view angles were used for further analysis
(Supplemental Fig. S1C).

To process the 95,118 fluorescence images, we developed an open-source
software called Image Harvest (https://git.unl.edu/aknecht2/ih). Image
Harvest is written in Python and utilizes functions in OpenCV to extract plant
pixels from LemnaTec images (Bradski, 2000). For the execution of the image
processing pipelines on high-performance computing clusters, Image Harvest
utilizes Pegasus, which translates a series of computational tasks into a Di-
rected Acyclic Graph and utilizes HTCondor to execute the jobs in parallel on
the Open Science Grid (Thain et al., 2005; Sfiligoi et al., 2009; Deelman et al.,
2015). The processing workflow was developed using a set of 95,118 side-view
images, and the quality of each processing step was determined manually. The

Plant Physiol. Vol. 168, 2015 1485

Genetic Basis of Temporal Salt Responses in Rice

 www.plantphysiol.orgon April 19, 2018 - Published by Downloaded from 
Copyright © 2015 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://mirrors.iplantcollaborative.org/browse/iplant/home/shared/walia_rice_salt
http://mirrors.iplantcollaborative.org/browse/iplant/home/shared/walia_rice_salt
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
https://git.unl.edu/aknecht2/ih
http://www.plantphysiol.org


workflow consists of three main steps: pot masking, background removal, and
image cropping. The background removal steps are accomplished using the
colorFilter function. Due to the bright plant and dark background, filtering
pixels by intensity serves as the primary tool to distinguish between plant and
nonplant pixels. Specifically, filtering based on the net intensity (r + g + b) and
filtering by the difference between the red and green channels are the major
operations. The first filtering keeps pixels from both the plant and pot,
whereas the second threshold removes the green pixels of the pot, as well as
orange pixels that may show up from debris fluorescing in the image. The
image is then cropped based on contours (connected areas of pixels) in the
image through the use of the contourCut function.

To identify color ranges that may be representative of senescent tissue,
histograms representing the range of pixel values for red and green color
channels present in all fluorescence images were generated and segmented into
90 color classes. All possible pairwise combinations of R and G classes were
generated, resulting in a total of 90 final color classes that represented the full
range of color values in each fluorescence image. For each image, pixels were
allocated to each bin depending on the color value. The number of pixels for
each bin were summed from both side-view images and expressed as a per-
centage of the plant area from the two side-view images. To identify color
classes displaying differences between treatments across all 373 accessions, a
one-way blocked ANOVAwas performed at each individual time point, where
treatment was considered as a fixed effect and accession as a block. Raw
P values were adjusted using a Bonferroni correction of a = 0.05, which cor-
responds to a raw P value , 0.00056.

Determination of Sodium and Potassium Content

The newest expanding leaf (third leaf) was marked on each plant at the time
of the first salt application. At the end of the experiment, this leaf was harvested,
rinsed with milliQ water, and patted dry. The samples were placed into 50-mL
conical tubes, and after being dried at 60°C overnight, the dry weight was
determined for each leaf sample. Leaves were digested in 10 mL of 1% (w/w)
nitric acid (70% [w/w] Nitric Acid; Chem-Supply NA001-500M, Gillman) at
70°C for 8 h. Samples were diluted in milliQ water at a 1:5 or 1:10 ratio, and
Na+ and K+ content was determined against the appropriate Na+ and K+

standard (100:1,000–500:1,000 mM NaCl:KCl) using flame photometry (Model
420 Flame Photometer, Sherwood Scientific). Ion content was calculated per
gram of dry mass as described by Munns et al. (2010).

Hierarchical Clustering Analysis of Fluorescence
Color Classes

Hierarchical clustering analysis was used to identify and visualize similar
temporal trends between fluorescence color classes. For each color class and
treatment, the mean response across all 373 accessions was determined. Be-
cause the values differ by orders of magnitude between color classes, the raw
mean values were transformed to Z-scores using the scale function in R (R Core
Team, 2014). Clustering was done with the complete-linkage method using
Dynamic Time Warping as a distance metric.

Canonical Correlation Analysis

Pearson correlation analysis was conducted between fluorescence and
growth image-based metrics at each time point to examine the relationships
between traits. At each time point, correlation analysis was done using the rcorr
function with the Pearson option in the Hmisc package in R (Harrell, 2014;
R Core Team, 2014).

Comparison of Salinity-Induced Growth Response Models
between Subpopulations

To determine whether there were any differences in the salinity response
among the five subpopulations (admix, aus, temperate japonica, tropical japonica,
and indica), the mean salinity-induced growth response, defined here as the
square root-transformed ratio of the PSA of plants under salt stress over that
of plants under normal growth situations, was calculated for each subpopu-
lation. Aromatic accessions were excluded from the analysis due to low n. The
mean response for each subpopulation was fitted to a decreasing logistic
function with a first-order autoregressive covariance structure over time using
gnls and SSLogis functions in the nlme package in R (R Core Team, 2014;

Pinheiro et al., 2015). For each pairwise comparison between subpopulations,
two models were fit: one where the parameters of the model are considered to
be different between subpopulations and one where the parameters are con-
sidered to be similar between subpopulations. An ANOVA was used to test
the null hypothesis that the parameters are similar between subpopulations.

Longitudinal Salinity-Induced Growth Response
Association Analysis

To identify the SNPs associated with characteristics of the growth pattern, a
unique functional association-mapping model was applied (Supplemental Fig.
S1C). The salt stress-induced growth response is measured as the square root-
transformed ratio of the PSA of plants under salt stress over that of plants
under normal growth situations. For each line and a specific SNP, the growth
response over 18 d is fitted with a decreasing logistic curve for each genotype,
with a first-order autoregressive covariance structure over time. For each SNP,
a likelihood ratio test is carried out on whether the growth response curves are
the same for the two genotypes. At each time point, on the other hand, the
relatedness between lines is accounted for by a random line effect with the
covariance matrix proportional to the kinship matrix estimated by the soft-
ware package EMMA (Kang et al., 2008).

In summary, for each line, the growth response is modeled with a nonlinear
mixed model. While at each time point, the model is the linear mixed model
commonly used for plant association studies as in Kang et al. (2008) and others
using the kinship matrix between lines to account for the population structure
(Yu et al., 2006; Malosetti et al., 2007; Zhao et al., 2007, 2011; Huang et al.,
2010; Famoso et al., 2011). For each line across time points, on the other hand,
the model reduces to a nonlinear mixed model with a first-order autore-
gressive covariance structure. Taken together, this results in an extended
mixed model with correlation structure both across time and also across lines.
This unique approach is required to account for the two types of dependency
structure to obtain valid inference results. Further details on the extended
mixed model can be found in Supplemental Methods S1.

From the 44,000 SNPs on the array, we removed SNPs with missing values
for more than 10% of the lines and those with minor allele frequency less than
10% (Zhao et al., 2011). This results in 26,258 SNPs for association analysis. For
each SNP, a likelihood ratio test is carried out on whether the growth response
curves are the same for the two genotypes. The P values from the analysis of
three replicates are combined with Fisher’s method to obtain the combined
P value, which is subsequently used to identify significant SNPs (Hartung et al.,
2011). Significant SNPs within a 200-kb window were combined and consid-
ered as a single QTL. The 200-kb window was chosen based on the estimated
linkage disequilibrium decay in this diversity panel (Zhao et al., 2011).

Conventional Mixed-Model Genome-wide
Association Analysis

A conventional mixed-model genome-wide association analysis was used to
identify genomic regions associated with leaf ion content (Na+, Na+:K+, and K+)
and fluorescence imaging traits. The mixed linear model can be summarized
as: y = Xb + Cg + Zu + e, where b and g represent coefficient vectors for SNP
effects and subpopulation principal components, respectively, which are fixed
effects, u is a random effect that accounts for population structure and relat-
edness, Z represents the corresponding design matrices, and e is the random
error term. The mixed model was implemented using EMMA in R using the
same 26,258 SNPs that were used for longitudinal salinity-induced growth
response association analysis (Kang et al., 2008).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Schematic illustrating the experimental design
and pipeline for the analysis of high-throughput phenotyping data.

Supplemental Figure S2. Schematic illustrating NaCl application.

Supplemental Figure S3. GWA analysis of leaf Na+, K+, and Na+:K+ content.

Supplemental Figure S4. Distribution of leaf ion content observed between
allelic groups at id1018154 and id1014913.

Supplemental Figure S5. GWA analysis of fluorescence color classes,
day 1.
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Supplemental Figure S6. GWA analysis of fluorescence color classes,
day 2.

Supplemental Figure S7. GWA analysis of fluorescence color classes,
day 3.

Supplemental Figure S8. GWA analysis of fluorescence color classes,
day 4.

Supplemental Figure S9. GWA analysis of fluorescence color classes,
day 5.

Supplemental Figure S10. GWA analysis of fluorescence color classes,
day 6.

Supplemental Figure S11. GWA analysis of fluorescence color classes,
day 7.

Supplemental Figure S12. GWA analysis of fluorescence color classes,
day 8.

Supplemental Figure S13. GWA analysis of fluorescence color classes,
day 9.

Supplemental Figure S14. GWA analysis of fluorescence color classes,
day 10.

Supplemental Figure S15. GWA analysis of fluorescence color classes,
day 11.

Supplemental Figure S16. GWA analysis of fluorescence color classes,
day 12.

Supplemental Figure S17. GWA analysis of fluorescence color classes,
day 13.

Supplemental Figure S18. GWA analysis of fluorescence color classes,
day 14.

Supplemental Figure S19. Trajectories of the 32 salinity-responsive fluo-
rescence color classes.

Supplemental Figure S20. Mean temporal trends of the 32 salinity-
responsive fluorescence color classes.

Supplemental Figure S21. LemnaGrid pipeline used to process RGB side-
and top-view images.

Supplemental Figure S22. Color classes used to define foreground and
background pixels from RGB side- and top-view images for the
LemnaGrid nearest-neighbor foreground-background color separation
method.

Supplemental Table S1. Seven digital traits used to describe plant growth
responses.

Supplemental Table S2. Accuracy of digital traits for describing biomass
and shoot area.

Supplemental Table S3. Candidate genes underlying significant SNPs.

Supplemental Table S4. LemnaGrid devices used for processing RGB im-
ages and corresponding Image Harvest/OpenCV functions.

Supplemental Data Set S1. Pearson correlation between PSA and 32 flu-
orescence color classes in control and saline conditions.

Supplemental Data Set S2. Pearson correlation of salt-induced responses
for PSA and fluorescence color classes.

Supplemental Data Set S3. Genes located within 200 kb of significant
SNPs associated with salinity-induced growth responses identified
with longitudinal GWA analysis (P , 10–8).

Supplemental Data Set S4. Genes located within 200 kb of significant
SNPs associated with salinity-induced growth responses identified
with conventional mixed model GWA analysis (P , 10–4).

Supplemental Data Set S5. Genes located within 200 kb of significant
SNPs associated with salinity-induced fluorescence responses identified
with conventional mixed model GWA analysis (P , 10–7).

Supplemental Methods S1. Extended mixed model for association map-
ping with a growth response curve.

ACKNOWLEDGMENTS

We thank Dr. Aaron Schmitz for multiplying seed stocks; Dr. Rachel
Burton, Helli Meinecke, Dr. Alex Garcia, Richard Norrish, Dr. Guntur
Tanjung, Evi Guidolin, Robin Hosking, Lidia Mischis, Nicki Bond, and Fiona
Groskreutz for providing technical and organizational support; and Dr. David
Swanson and Dr. Adam Caprez for providing support in the area of high-
performance computing.

Received March 25, 2015; accepted June 25, 2015; published June 25, 2015.

LITERATURE CITED

Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance
conferred by overexpression of a vacuolar Na+/H+ antiport in Arabi-
dopsis. Science 285: 1256–1258

Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I,
Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, et al (2012) A rice
calcium-dependent protein kinase OsCPK12 oppositely modulates salt-
stress tolerance and blast disease resistance. Plant J 69: 26–36

Azaizeh H, Steudle E (1991) Effects of salinity on water transport of excised
maize (Zea mays L.) roots. Plant Physiol 97: 1136–1145

Bac-Molenaar JA, Vreugdenhil D, Granier C, Keurentjes JJB (April 28,
2015) Genome-wide association mapping of growth dynamics detects
time-specific and general quantitative trait loci. J Exp Bot http://dx.doi.
org/10.1093/jxb/erv176

Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to
study drought responses. J Exp Bot 61: 3519–3528

Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio
C, Uozumi N, Oiki S, Yamada K, Cellier F, et al (2003) Functional
analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the
phloem is crucial for salt tolerance. EMBO J 22: 2004–2014

Bonilla P, Mackell D, Deal K, Gregorio G (2002) RFLP and SSLP mapping
of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using
recombinant inbred lines. Philipp Agric Sci 85: 68–76

Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C
(2008) Stimulus-induced down-regulation of root water transport in-
volves reactive oxygen species-activated cell signalling and plasma
membrane intrinsic protein internalization. Plant J 56: 207–218

Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005)
Early effects of salinity on water transport in Arabidopsis roots: molecular
and cellular features of aquaporin expression. Plant Physiol 139: 790–805

Bradski G (2000) The OpenCV Library. Dr Dobb’s J Softw Tools 25: 120–126
Brown TB, Cheng R, Sirault XRR, Rungrat T, Murray KD, Trtilek M,

Furbank RT, Badger M, Pogson BJ, Borevitz JO (2014) TraitCapture:
genomic and environment modelling of plant phenomic data. Curr Opin
Plant Biol 18: 73–79

Busemeyer L, Ruckelshausen A, Möller K, Melchinger AE, Alheit KV,
Maurer HP, Hahn V, Weissmann EA, Reif JC, Würschum T (2013)
Precision phenotyping of biomass accumulation in triticale reveals
temporal genetic patterns of regulation. Sci Rep 3: 2442

Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B
(2014) Overexpression of a calcium-dependent protein kinase confers
salt and drought tolerance in rice by preventing membrane lipid per-
oxidation. Plant Physiol 165: 688–704

Carvajal M, Martínez V, Alcaraz CF (1999) Physiological function of water chan-
nels as affected by salinity in roots of paprika pepper. Physiol Plant 105: 95–101

Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant
Physiol 87: 547–550

Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C
(2014) Dissecting the phenotypic components of crop plant growth and
drought responses based on high-throughput image analysis. Plant Cell
26: 4636–4655

Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-
induced Ca2+ waves are associated with rapid, long-distance root-to-
shoot signaling in plants. Proc Natl Acad Sci USA 111: 6497–6502

Coombes N (2009) Digger design search tool in R. http://www.austatgen.
org/software (February 25, 2015)

Cui Y, Zhu J, Wu R (2006) Functional mapping for genetic control of
programmed cell death. Physiol Genomics 25: 458–469

Das K, Li J, Wang Z, Tong C, Fu G, Li Y, Xu M, Ahn K, Mauger D, Li R,
et al (2011) A dynamic model for genome-wide association studies.
Hum Genet 129: 629–639

Plant Physiol. Vol. 168, 2015 1487

Genetic Basis of Temporal Salt Responses in Rice

 www.plantphysiol.orgon April 19, 2018 - Published by Downloaded from 
Copyright © 2015 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00450/DC1
http://dx.doi.org/10.1093/jxb/erv176
http://dx.doi.org/10.1093/jxb/erv176
http://www.austatgen.org/software
http://www.austatgen.org/software
http://www.plantphysiol.org


Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007)
The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem
in Arabidopsis. Plant Cell Environ 30: 497–507

Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ,
Mayani R, Chen W, da Silva RF, Livny M, et al (2015) Pegasus, a
workflow management system for science automation. Futur Gener
Comput Syst 46: 17–13

Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C,
Kochian LV, McCouch SR (2011) Genetic architecture of aluminum
tolerance in rice (Oryza sativa) determined through genome-wide asso-
ciation analysis and QTL mapping. PLoS Genet 7: e1002221

Fricke W (2004) Rapid and tissue-specific accumulation of solutes in the
growth zone of barley leaves in response to salinity. Planta 219: 515–525

Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed
barley: a study at the cell level. Plant Physiol 129: 374–388

Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-
Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes
during salinity-induced leaf senescence in tomato (Solanum lycopersicum
L.). J Exp Bot 59: 3039–3050

Gierth M, Mäser P (2007) Potassium transporters in plants: involvement in
K+ acquisition, redistribution and homeostasis. FEBS Lett 581: 2348–
2356

Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun
DS (2011) Accurate inference of shoot biomass from high-throughput
images of cereal plants. Plant Methods 7: 2

Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase
physically interacts with and is activated by the calcium-binding protein
SOS3. Proc Natl Acad Sci USA 97: 3735–3740

Hartung J, Knapp G, Sinha BK (2011) Statistical Meta-Analysis with Ap-
plications. John Wiley & Sons, Inc., Hoboken, NJ

He Q, Berg A, Li Y, Vallejos CE, Wu R (2010) Mapping genes for plant
structure, development and evolution: functional mapping meets on-
tology. Trends Genet 26: 39–46

Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-
throughput phenotyping to detect drought tolerance QTL in wild bar-
ley introgression lines. PLoS One 9: e97047

Horie T, Kaneko T, Sugimoto G, Sasano S, Panda SK, Shibasaka M,
Katsuhara M (2011) Mechanisms of water transport mediated by PIP
aquaporins and their regulation via phosphorylation events under sa-
linity stress in barley roots. Plant Cell Physiol 52: 663–675

Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in
glycophytes: an overview with the central focus on rice plants. Rice (N Y)
5: 11

Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES,
Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a
gene for salt tolerance in durum wheat. Plant Physiol 142: 1718–1727

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T,
Zhang Z, et al (2010) Genome-wide association studies of 14 agronomic
traits in rice landraces. Nat Genet 42: 961–967

Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function
in plant salt tolerance requires N-myristoylation and calcium binding.
Plant Cell 12: 1667–1678

Harrell FEH Jr (2014) Hmisc: Harrell Miscellaneous. http://biostat.mc.
vanderbilt.edu/Hmisc (November 20, 2013)

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ,
Eskin E (2008) Efficient control of population structure in model orga-
nism association mapping. Genetics 178: 1709–1723

Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001)
Quantitative trait loci for component physiological traits determining
salt tolerance in rice. Plant Physiol 1: 406–422

Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B,
Csaszar E, Hedrich R, Teige M, Becker D (2013) Salt stress triggers
phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-
dependent protein kinases (CDPKs). Mol Plant 6: 1274–1289

Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH,
Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots
controlling rice salt tolerance. Theor Appl Genet 108: 253–260

Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) Osb-
ZIP71, a bZIP transcription factor, confers salinity and drought tolerance
in rice. Plant Mol Biol 84: 19–36

Lutts S, Bouharmont JMKJ (1996) NaCl-induced senescence in leaves of
rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot
(Lond) 5: 389–398

Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A
mixed-model approach to association mapping using pedigree infor-
mation with an illustration of resistance to Phytophthora infestans in
potato. Genetics 175: 879–889

Martínez-Ballesta MC, Aparicio F, Pallás V, Martínez V, Carvajal M
(2003) Influence of saline stress on root hydraulic conductance and PIP
expression in Arabidopsis. J Plant Physiol 160: 689–697

Matsuda K, Riazi A (1981) Stress-induced osmotic adjustment in growing
regions of barley leaves. Plant Physiol 68: 571–576

Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Véry AA
(2011) Overexpression of an Na+- and K+-permeable HKT transporter in
barley improves salt tolerance. Plant J 68: 468–479

Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J,
Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance
engineered by cell type-specific alteration of Na+ transport in Arabi-
dopsis. Plant Cell 21: 2163–2178

Moore CR, Johnson LS, Kwak IY, Livny M, Broman KW, Spalding EP
(2013) High-throughput computer vision introduces the time axis to a
quantitative trait map of a plant growth response. Genetics 195: 1077–
1086

Munns R (2002) Comparative physiology of salt and water stress. Plant
Cell Environ 25: 239–250

Munns R, Greenway H, Delane R, Gibbs J (1982) Ion concentration and
carbohydrate status of the elongating leaf tissue of Hordeum vulgare
growing at high external NaCl II. Cause of growth reduction. J Exp Bot
33: 574–583

Munns R, James RA (2003) Screening methods for salinity tolerance: a case
study with tetraploid wheat. Plant Soil 253: 201–218

Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare
RA, Tyerman SD, Tester M, et al (2012) Wheat grain yield on saline
soils is improved by an ancestral Na⁺ transporter gene. Nat Biotechnol
30: 360–364

Munns R, Passioura J (1984) Effect of prolonged exposure to NaCl on the
osmotic pressure of leaf xylem sap from intact, transpiring barley plants.
Aust J Plant Physiol 11: 497

Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant
Physiol 13: 143

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev
Plant Biol 59: 651–681

Munns R, Wallace PA, Teakle NL, Colmer TD (2010) Measuring soluble
ion concentrations (Na+, K+, Cl2) in salt-treated plants. Methods Mol
Biol 639: 371–382

Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011)
Recent updates on salinity stress in rice: from physiological to molecular
responses. CRC Crit Rev Plant Sci 30: 329–377

Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice
shaker potassium channel OsKAT1 confers tolerance to salinity stress on
yeast and rice cells. Plant Physiol 144: 1978–1985

Paine CET, Marthews TR, Vogt DR, Purves D, Rees M, Hector A,
Turnbull LA (2012) How to fit nonlinear plant growth models and calcu-
late growth rates: an update for ecologists. Methods Ecol Evol 3: 245–256

Pinheiro J, Bates D, DebRoy S, Sarkar D; R Core Team (2015) {nlme}: Linear
and Nonlinear Mixed Effects Models. R package version 3.1-121. http://
CRAN.R-project.org/package=nlme (June 30, 2015)

Poiré R, Chochois V, Sirault XRR, Vogel JP, Watt M, Furbank RT (2014)
Digital imaging approaches for phenotyping whole plant nitrogen and
phosphorus response in Brachypodium distachyon. J Integr Plant Biol 56:
781–796

R Core Team (2014) R: A Language and Environment for Statistical
Computing. http://www.r-project.org ( July 8, 2015)

Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main com-
ponents of salinity tolerance in cereals. Plant Cell Environ 32: 237–249

Rawson HM, Munns R (1984) Leaf expansion in sunflower as influenced by
salinity and short-term changes in carbon fixation. Plant Cell Environ 7:
207–213

Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY,
Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance
encodes a sodium transporter. Nat Genet 37: 1141–1146

Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins NC
(2011) A SOS3 homologue maps to HvNax4, a barley locus controlling
an environmentally sensitive Na+ exclusion trait. J Exp Bot 62: 1201–1216

Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa
H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance

1488 Plant Physiol. Vol. 168, 2015

Campbell et al.

 www.plantphysiol.orgon April 19, 2018 - Published by Downloaded from 
Copyright © 2015 American Society of Plant Biologists. All rights reserved.

http://biostat.mc.vanderbilt.edu/Hmisc
http://biostat.mc.vanderbilt.edu/Hmisc
http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=nlme
http://www.r-project.org
http://www.plantphysiol.org


determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci
USA 98: 14150–14155

Schmidt R, Mieulet D, Hubberten H, Obata T, Hoefgen R, Fernie AR,
Fisahn J, Segundo BS, Guiderdoni E, Schippers JHM, et al (2013)
SALT-RESPONSIVE ERF1 regulates reactive oxygen species-dependent
signaling during the initial response to salt stress in rice. Plant Cell 25:
1–18

Sfiligoi I, Bradley DC, Holzman B, Mhashilkar P, Padhi S, Wurthwein F
(2009) The pilot way to grid resources using glideinWMS. WRI World
Congr 2: 428–432

Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tol-
erance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad
Sci USA 97: 6896–6901

Slovak R, Göschl C, Su X, Shimotani K, Shiina T, Busch W (2014) A
scalable open-source pipeline for large-scale root phenotyping of Arabi-
dopsis. Plant Cell 26: 2390–2403

Sunarpi HT, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan
WY, Leung HY, Hattori K, et al (2005) Enhanced salt tolerance mediated
by AtHKT1 transporter-induced Na unloading from xylem vessels to
xylem parenchyma cells. Plant J 44: 928–938

Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J,
Ayaydin F, Strizhov N, Jásik J, Schmelzer E, et al (2008) Duplicated
P5CS genes of Arabidopsis play distinct roles in stress regulation and
developmental control of proline biosynthesis. Plant J 53: 11–28

Thain D, Tannenbaum T, Livny M (2005) Distributed computing in
practice: the Condor experience. Concurr Comput Pract Exp 17: 323–356

Thomson MJ, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada
DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, et al (2010)
Characterizing the Saltol quantitative trait locus for salinity tolerance in
rice. Rice (N Y) 3: 148–160

Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee CR, Zurek PR, Symonova
O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, et al (2013) 3D
phenotyping and quantitative trait locus mapping identify core regions
of the rice genome controlling root architecture. Proc Natl Acad Sci USA
110: E1695–E1704

van der Weele CM, Jiang HS, Palaniappan KK, Ivanov VB, Palaniappan
K, Baskin TI (2003) A new algorithm for computational image analysis
of deformable motion at high spatial and temporal resolution applied to
root growth: roughly uniform elongation in the meristem and also, after
an abrupt acceleration, in the elongation zone. Plant Physiol 132: 1138–1148

Walter A, Spies H, Terjung S, Küsters R, Kirchgessner N, Schurr U (2002)
Spatio-temporal dynamics of expansion growth in roots: automatic
quantification of diurnal course and temperature response by digital
image sequence processing. J Exp Bot 53: 689–698

Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H (2012)
QTL analysis of Na+ and K+ concentrations in roots and shoots under
different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 7:
e51202

Wu R, Lin M (2006) Functional mapping: how to map and study the genetic
architecture of dynamic complex traits. Nat Rev Genet 7: 229–237

Würschum T, Liu W, Busemeyer L, Tucker MR, Reif JC, Weissmann EA,
Hahn V, Ruckelshausen A, Maurer HP (2014) Mapping dynamic QTL
for plant height in triticale. BMC Genet 15: 59

Xu Z, Shen X, Pan W; Alzheimer’s Disease Neuroimaging Initiative
(2014) Longitudinal analysis is more powerful than cross-sectional
analysis in detecting genetic association with neuroimaging phenotypes.
PLoS One 9: e102312

Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie
W, Lian X, et al (2014) Combining high-throughput phenotyping and
genome-wide association studies to reveal natural genetic variation in
rice. Nat Commun 5: 5087

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF,
McMullen MD, Gaut BS, Nielsen DM, Holland JB, et al (2006) A
unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat Genet 38: 203–208

Zeng L, Shannon M (2000) Salinity effects on seedling growth and yield
components of rice. Crop Sci 40: 996–1003

Zeng L, Shannon MC, Grieve CM (2002) Evaluation of salt tolerance in
rice genotypes by multiple agronomic parameters. Euphytica 127:
235–245

Zhang X, Hause RJ, Borevitz JO (2012) Natural genetic variation for
growth and development revealed by high-throughput phenotyping in
Arabidopsis thaliana. G3 (Bethesda) 2: 29–34

Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C,
Zheng H, Dean C, Marjoram P, et al (2007) An Arabidopsis example of
association mapping in structured samples. PLoS Genet 3: e4

Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton
GJ, Islam MR, Reynolds A, Mezey J, et al (2011) Genome-wide asso-
ciation mapping reveals a rich genetic architecture of complex traits in
Oryza sativa. Nat Commun 2: 467

Plant Physiol. Vol. 168, 2015 1489

Genetic Basis of Temporal Salt Responses in Rice

 www.plantphysiol.orgon April 19, 2018 - Published by Downloaded from 
Copyright © 2015 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org

