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A Comprehensive Image-based Phenomic Analysis 
Reveals the Complex Genetic Architecture of Shoot 
Growth Dynamics in Rice (Oryza sativa)
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Chi Zhang, and Harkamal Walia*

Abstract
Early vigor is an important trait for many rice (Oryza sativa L.)-
growing environments. However, genetic characterization and 
improvement for early vigor is hindered by the temporal nature of 
the trait and strong genotype × environment effects. We explored 
the genetic architecture of shoot growth dynamics during the 
early and active tillering stages by applying a functional model-
ing and genomewide association (GWAS) mapping approach 
on a diversity panel of ~360 rice accessions. Multiple loci with 
small effects on shoot growth trajectory were identified, indicat-
ing a complex polygenic architecture. Natural variation for shoot 
growth dynamics was assessed in a subset of 31 accessions us-
ing RNA sequencing and hormone quantification. These analyses 
yielded a gibberellic acid (GA) catabolic gene, OsGA2ox7, 
which could influence GA levels to regulate vigor in the early 
tillering stage. Given the complex genetic architecture of shoot 
growth dynamics, the potential of genomic selection (GS) for 
improving early vigor was explored using all 36,901 single-nucle-
otide polymorphisms (SNPs) as well as several subsets of the most 
significant SNPs from GWAS. Shoot growth trajectories could be 
predicted with reasonable accuracy using the 50 most significant 
SNPs from GWAS (0.37–0.53); however, the accuracy of pre-
diction was improved by including more markers, which indicates 
that GS may be an effective strategy for improving shoot growth 
dynamics during the vegetative growth stage. This study provides 
insights into the complex genetic architecture and molecular 
mechanisms underlying early shoot growth dynamics and pro-
vides a foundation for improving this complex trait in rice.

Early vigor, defined as a plant’s ability to accumulate 
shoot biomass rapidly during early developmental 

stages, is critical for stand establishment, resource acqui-
sition, and, ultimately, yield. The rapid emergence of 
leaves leads to early canopy closure, which reduces soil 
evaporation, thereby improving seasonal water use effi-
ciency and conserving water for later vegetative growth 
and grain production. In rice, early vigor is a particularly 
important trait for regions where rice is direct seeded 
(Mahender et al., 2015). As the cost of labor rises, a shift 
from the labor-intensive practice of transplanted rice to 
direct-seeded rice is the expected solution to solve this 
problem (Mahender et al., 2015).
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Core Ideas

•	 Functional mapping uncovers the genetic architecture 
of shoot growth dynamics.

•	 Gibberellic acid is an underlying component for 
natural variation for shoot growth dynamics in rice.

•	 Genomic prediction is effective for improving early 
growth dynamics.
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Several studies have examined seedling vigor in rice 
and elucidated the underlying genetic basis using con-
ventional phenotyping strategies under field and green-
house conditions (Redoña and Mackill, 1996; Lu et al., 
2007; Cairns et al., 2009; Rebolledo et al., 2012a; 2012b, 
2015; Liu et al., 2014). In a recent study by Rebolledo et 
al (2015), multiple vigor-related traits such as plant mor-
phology and nonstructural carbohydrates were quanti-
fied in a rice diversity panel of 123 japonica varieties 
(Rebolledo et al., 2015). The authors integrated multiple 
phenotypic metrics in a functional–structural plant 
model, called Ecomeristem, and performed GWAS map-
ping using phenotypic metrics and model parameters as 
trait values (Luquet et al., 2012; Rebolledo et al., 2015). 
Such multitrait approaches provide a more comprehen-
sive understanding of the biochemical and genetic basis 
of early vigor than conventional single trait approaches.

Early vigor is a function of time. The timing of devel-
opmental switches that initiate tiller formation and rapid 
exponential growth are a crucial component of this trait. 
However, despite this temporal dimension, most studies 
have assessed the genetic basis of early vigor at one or a 
few discrete time points (Redoña and Mackill, 1996; Lu 
et al., 2007; Cairns et al., 2009; Rebolledo et al., 2012a; 
2012b, 2015; Liu et al., 2014). Such approaches are overly 
simplistic and may only provide a snapshot of the genetic 
determinants that cumulatively influence the final bio-
mass. However, sampling for biomass at high frequencies 
over a developmental window for mapping populations 
using conventional destructive phenotyping approaches 
would require tens to hundreds of thousands of plants 
and be highly labor-intensive. With the advent of high-
throughput image-based phenomic platforms, plants 
can be phenotyped nondestructively more frequently 
throughout their growth cycle to examine the tempo-
ral dynamics of physiological and morphological traits 
(Berger et al., 2010; Golzarian et al., 2011; Busemeyer et 
al., 2013; Topp et al., 2013; Moore et al., 2013; Würschum 
et al., 2014; Hairmansis et al., 2014; Slovak et al., 2014; 
Yang et al., 2014; Honsdorf et al., 2014; Chen et al., 2014; 
Bac-Molenaar et al., 2015).

Mathematical equations that describe a develop-
mental or physiological process can be applied to this 
high-resolution temporal data to describe temporal 
growth trajectories using mathematical parameters. 
Several models, such as logistic, exponential, and power-
law functions, have been used to describe plant growth 
(Paine et al., 2012). These approaches enhance the tempo-
ral resolution of phenotyping and, when combined with 
association or linkage mapping, improve the power to 
detect genetic associations for complex traits compared 
with traditional cross-sectional approaches (Wu and Lin, 
2006; Xu et al., 2014; Campbell et al., 2015). However, 
despite the recent advances in phenotyping technolo-
gies, the genetic basis of early growth dynamics in rice or 
other cereals remains largely unexplored.

Multiple and sometimes uncorrelated phenotypes 
determine the rate and extent of vegetative growth in 

crops. We hypothesize that capturing growth dynamics 
at a higher temporal resolution can help elucidate the 
genetic basis of this trait. To this end, we sought to exam-
ine the genetic architecture of temporal shoot growth 
dynamics during the early and active tillering stages 
(8–27 d after transplanting (DAT) and 19–41 DAT) in 
rice. A panel of ~360 diverse rice accessions was phe-
notyped using a nondestructive image-based platform 
and temporal trends in shoot growth were modeled with 
a power-law function (Zhao et al., 2011). We provide 
insights into the genetic basis of shoot growth by using 
GWAS analysis. The underlying molecular mechanisms 
were explored using RNA sequencing on a subset of the 
diversity panel during the early tillering stage. Genomic 
selection of the model parameters and daily estimates of 
shoot biomass suggest that GS may be an effective strat-
egy for improving early vigor in rice.

Materials and Methods
Plant Materials and Genotyping
A rice diversity panel consisting of 413 accessions was 
obtained from the USDA-ARS Dale Bumpers Rice 
Research Center and purified through single seed 
descent before they were phenotyped (Zhao et al., 2011; 
Famoso et al., 2011; Eizenga et al., 2014). After removing 
accessions with low seed or poor seed quality, a subset 
of 360 and 361 accessions were phenotyped during the 
early and late tillering stages, respectively. All accessions 
of the rice diversity panel were genotyped using a 44-k 
SNP array (Zhao et al., 2011; https://ricediversity.org/
data/sets/44kgwas/, accessed 18 Apr. 2016). The genotypic 
dataset consisted of 33,901 markers for 360 accessions. 
Missing markers were imputed using Beagle with 20 
iterations (Browning and Browning, 2016).

Greenhouse Growth Conditions and Phenotyping
Two experiments were conducted at the Plant Accelera-
tor, Australian Plant Phenomics Facility, at the Uni-
versity of Adelaide, SA, Australia. The first experiment 
consisted of 361 accessions and was repeated three times 
from August to November 2013. The experiment con-
sisted of two smarthouses that were used consecutively 
for three periods, with each period forming a block. In 
each smarthouse, 216 pots were positioned across 24 
lanes. A partially replicated design was used for each 
period. The plants were phenotyped from 8 to 27 DAT. 
A complete description of the experimental design is 
provided in Campbell et al. (2015). The second experi-
ment was replicated three times from September to 
December 2014. The greenhouse conditions and experi-
mental design were nearly identical to those described 
above. However, only 360 accessions were used because 
of seed availability. The plants were phenotyped from 19 
to 41 DAT. For each experiment, the plants were imaged 
daily using a visible and red–green–blue camera (Basler 
Pilot piA2400–12 gc, Ahrensburg, Germany) from two 
side-view angles separated by 90° and a single top view. 
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A total of 142,671 images were generated for the 2013 
experiment and 152,997 images were generated from the 
2014 experiment.

Image Processing
All 295,668 images were processed with ImageHarvest 
(IH) (Knecht et al., 2016). Two processing pipelines were 
developed to extract plant pixels from the side-view 
and top-view images. Briefly, the side-view processing 
pipeline consists of three major steps: (i) preprocessing, 
(ii) thresholding, and (iii) removal of the pot and carrier 
from the image. Preprocessing smoothed the image, pro-
viding a more uniform background, and was achieved 
by using the gaussianBlur function in IH. The image was 
converted to grayscale and the adaptiveThreshold func-
tion was used to remove the majority of the nonplant 
pixels from the image. AdaptiveThreshold separates 
the image into smaller windows and, in each window, 
a threshold is applied and pixels are removed based on 
their intensity. A region of interest was defined around 
the pot and mean shift segmentation was applied using 
the meanshift function in IH to extract the plant pixels 
from this region.

Top-view images were processed using a slightly dif-
ferent pipeline. First, to create a more uniform coloring 
in the image, the color values were normalized using the 
normalizeByIntensity function in IH. For each pixel, the 
normalizeByIntensity function rescales the color value 
for each channel (red, green, and blue) based on its inten-
sity, which is defined as the sum of all color channels (red 
plus green plus blue) for that pixel. Next, the image was 
segmented using the meanshift function. Plant pixels 
were extracted from the image if the value for the green 
channel was greater than the value for the red channel. 
Finally, a morphological closing operation consisting of 
a dilation and erosion step was used to fill “holes” in the 
plant that may have been caused by the processing steps. 
This was achieved using the morphology function in IH.

Statistical Analysis of Projected Shoot Area
To quantify shoot growth at each time point, the plant 
pixels extracted from each of the three images (Side 
View 1, Side View 2, and top view) were summed. This 
metric, here defined as projected shoot area (PSA) has 
been shown to be a reliable estimate of shoot biomass 
(Berger et al., 2010; Campbell et al., 2015). For each 
period (i.e., August–November 2013 and September–
December 2014), PSA was combined across experiments 
and a linear model was fitted to calculate the adjusted 
means for each accession using the lsmeans function in 
the LSMeans package in R (R Core Team, 2014; https://
cran.r-project.org/web/packages/lsmeans/index.html, 
accessed 18 Apr. 2017). The experiment and treatment 
were considered to be fixed effects and accession as a 
random effect in the linear model. The adjusted means 
were used for a cross-sectional GWAS of PSA and func-
tional modeling.

Functional Modeling of Temporal Trends in PSA
For each accession, the adjusted mean for PSA was modeled 
using the following power function (Paine et al., 2012):

( ) - -é ù= + -ê úë û
1
0

1
11tM M rt , 		              [1]

where Mt is the PSA at time t, M0 is the PSA at the start 
of imaging, and r and  are parameters controlling the 
growth rate. The exponent  allows the relative growth 
rate to slow as biomass increases (Paine et al., 2012). The 
choice of model parameters is not trivial in nonlinear 
regression and is often based on visual inspection or 
a priori knowledge regarding the nature of the data. 
Therefore, to reduce the labor burden of fitting hundreds 
of models, a three-step approach was used to obtain 
optimal estimates of the parameters , r, and M0 using 
the nls2, nlmrt, and nlme packages in R (Grothendieck, 
2013; Nash, 2013; Pinheiro et al., 2015). First, rough start-
ing estimates were obtained by using nls2 with the brute-
force algorithm with 10,000 iterations. Nls2 performs 
a grid search to obtain rough estimates of the model 
parameters using a range of parameter values supplied by 
the user. The best estimates for each of the model param-
eters were supplied as starting values to the nlxb func-
tion in nlmrt. Nlmrt can be more robust in finding solu-
tions than nls, especially when the data to be modeled 
have small or zero residuals. Finally, the results obtained 
from nlxb were used to fit the model in nls.

Genomewide Association Analysis of PSA
To identify the genomic regions associated with PSA at 
each time point, a mixed model that accounted for kin-
ship and population structure was used for GWAS using 
the EMMA algorithm (Kang et al., 2008). The mixed 
linear model can be summarized as y = X + C + Zu 
+ e, where y is a vector of phenotype,  is a vector of 
fixed marker effects,  is a vector of principal component 
(PC) effects fitted to account for population structure, 
u is a vector of polygenic effects caused by relatedness, 
e is a vector of residuals, X is a marker incidence matrix 
relating  to y, C is an incidence matrix relating  to y 
that consists of the first four PCs resulting from a PC 
analysis, and Z is the corresponding design matrix relat-
ing y to u. It is assumed that u ~ MVN(0,Ku

2) and e 
~ MVN(0,Ie

2), where K is a kinship matrix estimated 
using an allele-sharing matrix calculated from the SNP 
data. Markers with a minor allele frequency less than 5% 
were excluded from the analysis. The parameter  during 
the active tillering stage was logarithmically transformed 
to provide a normal distribution prior to associa-
tion mapping.

To test for genetic associations with the model 
parameters M0, , and r in the early and active tillering 
stages, both univariate and multivariate approaches were 
implemented using Genomewide Efficient Mixed Model 
Association (Zhou and Stephens, 2014). To identify SNPs 
associated with the two power-law parameters describ-
ing growth rate,  and r, a bivariate mixed model was 



4 of 14	 the plant genome  july 2017  vol. 10, no. 2

used. The mixed model that was implemented is similar 
to that described above. Population and relatedness were 
accounted for by using the top four PCs and a centered 
genetic relatedness matrix. For each SNP, a likelihood 
ratio test was used to test the alternative hypothesis that 
  0, against the null hypothesis that  = 0.

To account for multiple testing, the Šidák correction 
using the effective number of tests (Meff) was applied (Li 
and Ji, 2005). Briefly, the effective number of independent 
tests (Meff) was determined via eigenvalue decomposition 
of the correlation matrix among 34,960 SNPs (MAF < 0.05 
for 360 accessions). The test criteria were then adjusted by 
using the Meff with the Šidák (1967) correction below:

( ) = - - eff1/
p e1 1

M

 
[2]

where p is the comparison-wise error rate and e is 
the experiment-wise error rate ( = 0.05). Using this 
approach, Meff was determined to be 2203, which is the 
number of eigenvalues necessary to explain 99% of varia-
tion, and p was 2.33  10−5.

Single-nucleotide polymorphisms within 200 kb, 
which represents the estimated linkage disequilibrium 
(LD) decay in this population, were considered as a single 
quantitative trait locus (QTL) (Zhao et al., 2011; Famoso 
et al., 2011). All genes within 200 kb of significant SNPs 
were considered as potential candidate genes. ANOVA 
was used to estimate the proportion of phenotypic vari-
ance accounted for by significant SNPs after adjusting 
for population structure effects. ANOVA was used to 
compare the linear models y = X + Cγ + e and y = C + 
e, where y is a vector of phenotype,  is the SNP effect, γ 
is a vector of PC effects, e is a vector of residuals, X is the 
SNP genotype, and C is a matrix of the first four PCs.

Genomic Selection
Genomic selection was performed using ridge regres-
sion best linear unbiased prediction implemented in 
the rrBLUP package in R (Endelman, 2011). Prediction 
was performed using all 36,901 SNPs as well as various 
subsets of the most significant associations from GWAS 
(GWAS-informed prediction). The inclusion of SNPs was 
based on GWAS performed in the training population 
for each fold and replicate. The prediction accuracy was 
assessed using a fivefold cross-validation. Accessions were 
randomly assigned to five subsets, with four subsets (288 
accessions) used as a training population and the remain-
ing 72 accessions used for validation. To assess prediction 
accuracy, genomic estimated breeding values (GEBVs) 
for the 72 accessions were calculated using the marker 
effects determined from the training population and were 
correlated to the observed phenotypes for those acces-
sions. Genomewide association was performed by using 
the GWAS function in the rrBLUP package with the P3D 
option using the top four PCs being used to account for 
population structure and the realized additive relation-
ship matrix, calculated with the A.mat function, being 

used to account for cryptic relatedness between accessions 
(Zhang et al., 2010; Endelman, 2011). Single-nucleotide 
polymorphisms were ranked on the basis of the–log10(p) 
values and the top 50, 100, 200, 500, 1000, 2500, 5000, 
7500, 10,000, 15,000, 20,000, 25,000, and 30,000 markers 
were selected for prediction analysis. The predictive abil-
ity was calculated as the correlation between the GEBV 
of the validation population and the observed values for 
the validation population. Twenty iterations of the fivefold 
cross-validation were performed for each trait.

Hormone Quantification
To quantify GA levels, shoot tissue was collected from 12 
accessions at 10 DAT (Supplemental Table S1). This time 
point was selected to reflect the start of imaging during 
the early tillering stage experiment. The plants were cul-
tured in a growth chamber with temperatures maintained 
at 28°C and 25°C during day and night respectively and 
60% relative humidity. Lighting was maintained at 800 
µmol m−2 s−1 using high-pressure sodium lights (Agrolite 
XT-ED25, Phillips , Somerset, NJ). Seeds were geminated 
in half-strength Murashige and Skoog media (0.8% agar) 
(Murashige and Skoog, 1962) and transplanted to pots 
filled with Turface (Profile Products LLC, Buffalo Grove, 
IL) 4 d after sowing. At 4 DAT, a half-strength Yoshida 
solution was provided and pH was maintained at 5.8 
(Yoshida et al., 1976). Two plants were grown in each pot. 
Shoot tissue was from two plants was pooled, flash frozen, 
and ground in liquid N. Hormones were extracted from 
250 mg tissue (fresh weight) following a published extrac-
tion protocol and was quantified with high-performance 
liquid chromatography–mass spectrometry (Pan et al., 
2010). Gibberellin A1 (GA1) and gibberellin A4 (GA4) 
were used as internal standards.

Growth Conditions  
for the Transcriptome Experiment
For the gene expression analysis, plants from 31 acces-
sions were grown in a controlled environment growth 
chamber (Supplemental Table S1). The growth condi-
tions were identical to those described above. At 10 DAT, 
aerial parts of the seedlings were excised from the roots 
and frozen immediately in liquid N. The samples were 
ground with Tissuelyser II (Invitrogen, Waltham, MA) 
and total RNA was isolated with the RNAeasy isolation 
kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions. On-column DNase treatment was 
performed to remove genomic DNA contamination (Qia-
gen). Sequencing was performed on an Illumina HiSeq 
2500 (Illumina, San Diego, CA). Sixteen RNA samples 
were combined in each lane. Two biological replicates 
were used for each accession (Supplemental Table S1).

RNA-seq Mapping and Analysis
After being examined with the package FastQC, short 
reads obtained via Illumina 101-bp single-end RNA 
sequencing were screened and trimmed using Trim-
momatic (Bolger et al., 2014) to ensure each read has 
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average quality score larger than 30 and longer than 15 
bp (Andrews, 2010; Bolger et al., 2014). The trimmed 
short reads were mapped against the rice genome (Oryza 
sativa ‘Nipponbare’ MSU, Release 6.0) using TopHat 
(version 2.0.10), allowing up to two base mismatches 
per read. Reads that mapped to multiple locations were 
discarded (Trapnell et al., 2009). The number of reads for 
each gene in the MSU version 6 annotation was counted 
using HTSeq and the “union” resolution mode was used 
(Anders et al., 2014).

The Bioconductor packages limma and EdgeR were 
used to identify genes that were differentially expressed 
between allelic groups at id3013397 and id2010960 (Gen-
tleman et al., 2004; Robinson and Oshlack, 2010; Ritchie 
et al., 2015). Briefly, genes with a total read count below 
50 across all 64 samples were excluded from the differ-
ential expression analysis. The libraries were normalized 
using the trimmed mean of M-values in EdgeR (Rob-
inson and Oshlack, 2010). The voom approach, imple-
mented in limma, was used to identify differentially 
expressed genes between the two allelic groups for the 
SNPs id3013397 and id2010960 (Law et al., 2014). Ben-
jamini and Hochberg’s method was used to control the 
false discovery rate, and genes with an adjusted p-value 
 0.1 were considered to be differentially expressed (Ben-
jamini and Hochberg, 1995).

Results

Considerable Natural Variation for Shoot 
Growth Dynamics is Present in the Rice  
Diversity Panel
We performed image-based high-throughput phenotyp-
ing of a subset of the rice diversity panel (Famoso et al., 
2011; Zhao et al., 2011) consisting of ~360 accessions 
belonging to each of the five major rice subpopulations 
(indica, aus, aromatic, temperate japonica, and tropical 
japonica) with the goal of discovering novel genetic vari-
ants influencing temporal growth dynamics during veg-
etative growth. Two separate triplicated experiments were 

conducted in which the diversity panel was phenotyped 
over periods of 19 and 22 d at the early vegetative stage 
(8–27 DAT; 361 accessions) and the active tillering stage 
(19–41 d DAT; 360 accessions), respectively. To quantify 
growth trajectories as a function of time, the shoot growth 
dynamics were modeled for each accession using a power-
law function (Paine et al., 2012) (Eq. [1]). Although rice 
exhibits a determinate growth pattern, the overlapping 
developmental windows selected for these studies cap-
tured the accelerating phase of shoot growth (Fig. 1A,B).

Considerable natural variation was observed in 
the diversity panel for all model parameters (M0,  
and r) as well as discrete measurements for PSA (Fig. 2; 
Supplemental File S1). Heritability estimates for model 
parameters ranged from 0.32 to 0.69 during the early til-
lering stage, whereas estimates during the late tillering 
stage ranged from 0.46 to 0.72. In both developmental 
stages, M0, the initial biomass on the first day of imaging, 
showed the highest heritability (0.69 and 0.72 at the early 
and active tillering stages, respectively). Model parame-
ters associated with growth rate ( and r) displayed mod-
erate heritability estimates (: 0.46 and 0.47; r: 0.32 and 
0.46 during the early and active tillering stages, respec-
tively). The moderate to high heritability for all model 
parameters suggests that a portion of the phenotypic 
variation for growth dynamics is under genetic control. 
The slightly lower genotypic contribution observed for 
model parameters describing growth rate compared 
with M0 indicates a smaller genotypic effect for these rate 
parameters and suggests that they may be influenced 
more by environmental conditions.

To examine the relationship between shoot growth 
dynamics at the early and active tillering stages, Pearson 
correlation analysis was conducted for each of the model 
parameters obtained from the early tillering and active 
tillering stages, as well as PSA at each time point in the 
experiment (Supplemental File S2). Significant positive 
relationships were observed for each model parameter 
between the two developmental stages, suggesting that 
the growth characteristics observed at early tillering 
stage partly persists during the later tillering stages. The 

Fig. 1. Shoot growth trajectories of the rice diversity panel during the early (A) and active tillering (B) stages. The mean growth across 
all rice diversity panel accessions was fitted using a power-law function and is indicated by the red line. The SD is indicated by the light 
blue shadow. The points indicate the mean growth across all accessions at each individual time point.
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model parameter r (from both developmental stages) dis-
played a significant negative correlation with PSA during 
both the early and later tillering stages. Conversely,  dis-
played a significant positive correlation with PSA, which 
is not surprising, considering that as values of  approach 
1, the power-law function begins to behave more like an 
exponential function, with constant relative growth rates 
being achieved when  = 1. Thus plants exhibiting near-
exponential growth tend to be very large.

A temporal trend in correlation was observed 
between the model parameters r and  and PSA during 
both developmental stages. For instance, during the early 
tillering stage  displayed a weak positive relationship 
with PSA at 8 to 16 DAT (r = 0.25–0.48). However, the 
strength of the correlation became progressively larger 
as time progressed with the highest being observed at 
23 DAT. The parameter r, on the other hand, displayed 

a similar trend, with a weak negative relationship being 
observed during the early time points and a progressively 
stronger negative correlation being observed at the later 
time points. Similar temporal trends were observed for 
 and r during the active tillering stage. These results 
indicate that the parameters obtained from functional 
modeling ( and r) can be used to describe growth char-
acteristics other than plant size that otherwise would not 
be identified via conventional cross-sectional approaches.

Genetic Basis of Shoot Biomass
To identify QTLs that exhibit a time-specific effect on 
shoot biomass we conducted GWAS at each of the 38 
time points during the early tillering and active tillering 
stages. A total of seven QTLs (26 SNPs) were significantly 
associated with PSA at one or more time points dur-
ing the early and active tillering stages (p < 2.33  10−5; 

Fig. 2. Distribution for each model parameter during the early (A–C) and active (D–E) tillering stages in rice. The parameters  (C, F) 
and r (B, E) control the rate of growth, whereas M0 (A, D) represents the estimate of the biomass at the start of the experiment. Values 
for  during the active tillering stage (F) are log-transformed.



campbell et al.: image-based phenomic analysis of rice shoot growth dynamics	 7 of 14

Table 1; Supplemental File S3). Five QTLs (nine SNPs) 
were identified during the early tillering stage and five 
(21 SNPs) were identified during the active tillering stage 
(Table 1; Supplemental File S3).

Interestingly, nearly a half of the QTLs (three) per-
sisted across developmental stages, suggesting that they 
may impact growth throughout the vegetative phases 
captured by the two experiments. For instance, the most 
significant persistent association was identified in a 
region on chromosome 6 (~26.2–26.6 Mb) (Fig. 3). Signif-
icant signals were identified for 16 of the 38 time points, 
with the earliest association observed at 22 DAT and 
the latest at 39 DAT. This QTL explained only a small 
portion of the phenotypic variation for PSA at 35 DAT 
(~5%). Several QTL were identified that displayed a time-
specific effect. A single QTL at ~5.9 Mb on chromosome 
4 was associated with PSA during the early tillering stage 
at 14 DAT and from 17 to 26 DAT. Two QTLs had effects 
on PSA during the active tillering stage only. Of these 
two, a QTL located at ~3 Mb on chromosome 8 had the 
largest effect on PSA and explained approximately 10% 
of the variation for PSA at 19 DAT (this QTL was only 
identified during the active tillering stage). This QTL was 
associated with PSA at 19 to 22 DAT. These results indi-
cate that shoot biomass may be regulated by multiple loci 
with small effects that act in both a transient and persis-
tent manner throughout early vegetative growth.

Functional GWAS Analysis
Although GWAS of PSA at discrete intervals provides 
information regarding the genetic basis of plant size over 
time, modeling plant growth allows for the data to be 
reduced to a mathematical equation that is defined by a 
small number of parameters, which can then be used as 
traits for genetic analysis. This approach allows for the 
detection of the genomic regions associated with growth 
trajectories, rather than discrete estimates of plant size. 
To identify genetic regions associated with shoot growth 
dynamics, GWAS was performed by using the model 
parameters that were obtained by modeling shoot bio-
mass accumulation at the early tillering and active tiller-
ing stages separately. A total of 19 SNPs (p < 2.33  10−5), 

corresponding to seven unique QTLs were identified for 
model parameters at both developmental stages (Table 
2; Fig. 4). The early tillering stage displayed a higher 
number of associations, with five QTLs detected, though 
two QTLs were detected for the model parameter M0 
during the active tillering stage. For all significant mark-
ers, the percentage of variation explained by individual 
QTLs was low (0.10). The most significant association 
was detected at ~ 25.2 Mb on chromosome 2 for r dur-
ing the early tillering stage and explained approximately 
6% of total variation for this trait. No QTL were identi-
fied that were common across all developmental stages, 
suggesting that shoot growth dynamics during the early 
and active tillering stages may be regulated by distinct 
genetic mechanisms.

In the power-law function, the parameters r and  
were used to control the rate of growth over time. Both 
model parameters displayed strong phenotypic correla-
tions during both the early and active tillering stages 
(−0.93 and −0.54, the for early and active tillering stages, 
respectively). Joint analysis of correlated phenotypes may 
improve power to detect genetic associations in GWAS 
compared to univariate approaches (Ferreira and Purcell, 
2009; Kim and Xing, 2009; Korte et al., 2012; O’Reilly et 
al., 2012; Zhou and Stephens, 2014). With this in mind, 
model parameters r and , which control growth rate, 
were used in a bivariate mixed model to detect associa-
tions in the early and active tillering stages (Zhou and 
Stephens, 2014). Overall, the bivariate approach identi-
fied nine QTLs (19 SNP) in total compared with the 
univariate approach; however, more than twice as many 
QTLs were identified during the active tillering stage if 
the bivariate approach was used (Fig. 4D,4H). During 
the early tillering stage, four QTLs were identified, two 
of which were identified by using the bivariate approach 
only. At the active tillering stage, five QTLs were identi-
fied, all of which were detected via the bivariate approach. 
The most significant association in the early tillering stage 
was detected at ~10.1 Mb on chromosome 8 (p = 6.11  
10−8 for the SNP wd8001592). These results suggest that 
the bivariate approach is more effective for detecting loci 
with small effects that regulate shoot growth dynamics.

Shoot Growth Dynamics during Early Tillering 
may be Regulated by GA
To identify candidate genes that may regulate vegetative 
growth dynamics in rice, we treated significant SNPs 
within a 200-kb window of one another as a single QTL 
and genes within 200 kb of each QTL were used for fur-
ther analysis. The 200-kb window was selected on the 
basis of the estimated LD decay in this diversity panel 
(Zhao et al., 2011; Famoso et al., 2011). A gene encoding 
a GA2-oxidase protein (OsGA2ox7; LOC_Os02g41954), 
which is involved in GA catabolism, was identified 
within the QTL at ~25.2 Mb on chromosome 2 that 
was associated with r during the early tillering stage. 
OsGA2ox7 is located approximately 54 kb away from 
the most significant SNP in this region, which is within 

Table 1. Quantitative trait loci (QTLs) associated with 
projected shoot area (PSA) during the early or late 
vegetative stage. Single-nucleotide polymorphisms 
within 200 kb were merged and considered to be a 
single QTL. 

Chromo-
some QTL position (bp) Traits

1 2,136,478–2,334,214 PSA (active tillering)
2 34,616,145–34,630,711 PSA (early tillering); PSA (active tillering)
4 5,923,594–6,033,595 PSA (early tillering)
5 4,871,496–5,071,497 PSA (early tillering)
6 26,235,553–26,631,930 PSA (early tillering); PSA (active tillering)
8 2,901,247–3,101,248 PSA (active tillering)

10 15,397,674–15,659,792 PSA (early tillering); PSA (active tillering)
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the estimated LD within this region (60 kb). To examine 
the differences between allelic groups at this QTL, we 
performed RNA sequencing and GA quantification on a 
subset of accessions (Supplemental File S5; Supplemental 
Table S1). A linear model was fitted in the Bioconductor 
package limma to examine the differences in expression 
between the two allelic groups at the most significant 
SNPs for this QTL (Gentleman et al., 2004; Ritchie et al., 
2015). Interestingly, the accessions in the major allelic 
group (A) displayed faster growth rate and significantly 
lower expression of this transcript (p = 0.005, SNP 
id2010960) than minor allelic groups (G) (Fig. 5A–C; 
Supplemental File S6).

To determine whether there were differences in GA 
content between allelic groups at the QTLs harboring 
OsGA2ox7, we quantified GA1, GA4, and GA20 levels 
in shoot tissue of 12 accessions within the major and 
minor allelic groups at this QTL. Samples were collected 
during the early tillering stage (10 DAT) to replicate 
the developmental timing of this QTL. Significant dif-
ferences were observed between allelic groups for GA4, 
with the faster growing A allele displaying higher levels 
of GA4 (p < 0.039; Fig. 6A). Although slightly higher 
levels of GA1 were also observed in the A allelic groups, 
the differences were not significant at the chosen  level 
( = 0.05; Fig. 6B). These results indicate that natural 
variation for shoot growth dynamics during the early 
tillering stage may be partly explained by differences in 
their bioactive GA levels. The differences in GA levels 
may be caused of higher expression of the GA catalytic 
enzyme, OsGA2ox7.

Prediction of Shoot Growth Dynamics and PSA
Since the QTLs identified using GWAS explained only 
a small portion of the total variance for PSA and model 
parameters, an approach that captures the small effects 
of many markers, such as GS, may be more advantageous 
for trait improvement than single marker strategies. 
With this in mind, GS analysis was performed by using 
ridge regression best linear unbiased prediction to exam-
ine the potential for improving shoot growth dynam-
ics and PSA in rice (Endelman, 2011). The accuracy of 
GS was assessed using a fivefold cross-validation using 
36,901 SNPs, as well as 14 sets of varying size of the top 
SNPs identified from GWAS with 20 iterations for each 
SNP set. For each accession in the training population, 
the GEBVs were calculated from marker effects estimated 
in the training population and were correlated with phe-
notypes for the 72 accessions in the validation popula-
tion. The relationship between GEBVs calculated with all 
36,901 markers and observed phenotypes is presented in 
Fig. 7 and Supplemental Fig. S1 to Supplemental Fig. S28.

Table 2. Subset of quantitative trait loci (QTLs) associ-
ated with the model parameters (M0, r, ) during the 
early and late vegetative astages. Single-nucleotide 
polymorphisms within 200 kb were merged and con-
sidered to be a single QTL. 

Chromo-
some QTL position (bp) Trait† Candidate genes

1 2,136,478–2,334,214 M0 (AT)
1 38,578,456–38,578,457 MV (ET) OsSD1(Sasaki et al., 2002)
2 22,247,678–22,447,679 MV (ET)
2 25,230,196–25,486,029 r (ET); MV (ET) OsGA2ox7 (Lo et al., 2008)
3 28,521,947–28,621,948 MV (AT)
4 26,365,306–26,565,307 MV (AT)
5 4,884,744–5,084,745 r (ET)
6 26,277,256–26,366,993 MV (AT)
8 2,901,212–3,101,248 M0 (AT)
8 8,348,656–8,448,657 r (ET)
8 10,138,560–10,145,645 MV (AT)
9 17,857,737–18,361,253  (ET); MV (ET) OsSG1 (Nakagawa et al., 2012), 

OsHOX4 (Dai et al., 2008)
12 3,943,968–4,146,493 r (ET)
12 22,231,779–22,331,780 MV (AT) OsTID1 (Sunohara et al., 2009)

† ET, early tillering; AT, active tillering; MV, multivariate

Fig. 3. Genomewide association (GWAS) analysis of projected shoot area (PSA) at each time point during the early and active tiller-
ing stages in rice. Genomewide association was performed at each time point and significant single-nucleotide polymorphisms (SNPs) 
(p < 2.33  10−5) within a 200-kb window were considered to be a single quantitative trait locus. Quantitative trait locus positions are 
indicated on the left of the heatmap. Quantitative trait loci detected during the overlapping time points are provided in Supplemental 
Table S2.
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Prediction accuracies ranged from 0.39 to 0.73 
(averaged across all SNP sets) with the highest accuracy 
observed for PSA at 30 DAT (0.73, averaged across all 
SNP sets; Supplemental File S7). The mean and SD across 
the 20 iterations is provided as Supplemental File S7. 
Of the three model parameters, M0 exhibited the high-
est accuracy (0.55 and 0.61 during the early and active 
tillering stages, respectively) (Fig. 8; Supplemental File 
S7). Although traits could be predicted with reason-
able accuracy using the 50 most significant SNPs from 

GWAS (0.37–0.68), the accuracy of prediction improved 
by including more markers. These trends in accuracy are 
consistent with a polygenic architecture where hundreds 
to thousands of loci contribute small effects to the phe-
notype (Kooke et al., 2016). These results indicate that GS 
may be an effective strategy for improving shoot biomass 
and enhancing shoot growth dynamics during the veg-
etative growth stage in rice.

Fig. 4. Genomewide association analysis of the model parameters during the early (A–D) and active tillering (E–H) stages in rice [M0 
(A, E), r (B, F),  (C, G), multivariate (D, H)]. The red horizontal line indicates the genomewide significance level (p < 2.33  10−5) as 
determined via the effective number of tests (Meff) method with the Šidák correction (Li and Ji, 2005). Significant single-nucleotide poly-
morphisms are highlighted in red. MV, multivariate; ET, early tillering; AT, active tillering; M0, biomass at the start of the experiment.
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Discussion
Growth is a complex phenotype that is greatly influenced 
by environmental and developmental cues. The observ-
able phenotype is the cumulative result of many biologi-
cal processes that occur over time. In grasses, the timing 
of developmental switches that initiate tiller development 
or a transition to the reproductive phase has a large 
influence on vigor and plant size. The temporal nature 
of such genetic effects are evidenced by the transient 
QTLs associated with PSA, as well as the small overlap 
in QTLs associated with model parameters across devel-
opmental stages. With the advent of high-throughput 
phenomics platforms, high-resolution temporal data can 
be collected nondestructively for large mapping popula-
tions. Mathematical equations that describe a develop-
mental or physiological process can be applied to these 
data to reduce the temporal growth trajectories to a few 
mathematical parameters and may capture components 
of the phenotype that may not be detected through 
cross-sectional phenotyping approaches. The additional 

phenotypic information provided by this approach is 
supported by the temporal correlation trend observed 
between model parameters and PSA, as well as the iden-
tification of 11 unique QTLs that were identified only 
with the functional GWAS approach. Only four QTLs 
were identified with both the cross-sectional and func-
tional GWAS approaches. The identification of 11 QTLs 
that are unique to model parameters may be a result of 
the greater power to detect alleles with small effects by 
using phenotypic data across time points; alternatively, 
the model parameters may be elucidating component(s) 
of growth phenotype that are not intuitively derived 
from discrete measurements of plant size.

The influence of plant hormones on agronomic 
growth-related traits is well documented in rice and 
other cereals (Peng et al., 1999; Yamamuro et al., 2000; 
Ikeda et al., 2001; Chandler et al., 2002; Chono et al., 
2003; Li et al., 2003; Nakamura et al., 2006; Sakamoto, 
2006). Gibberellic acid is a key regulator of plant growth 
and development and has contributed substantially to 

Fig. 6. Gibberellic acid (GA) content in rice within allelic groups at id2010960. Gibberellic acid levels were quantified in shoot tissue 
at ~10 d after transplantation (DAT). Differences between allelic groups were determined via Student’s t-test and the resulting p -value is 
indicated in red (n = 12).

Fig. 5. Role of gibberellic acid (GA) in the contrasting growth responses of rice between allelic groups at ~25.2 Mb on chromosome 
2: (A) expression of OsGA2ox7 between allelic groups at id2010960; (B,C) mean growth trajectories for allelic groups at the most sig-
nificant single-nucleotide polymorphism (SNP) associated with the model parameter r (id2010960) during the (B) early and (C) active 
tillering stages. Statistical significance was determined using the Bioconductor packages limma and edgeR. The resulting p -value is 
indicated in red. Both genes displayed significance difference in expression between allelic groups at the corresponding SNP [false 
discovery rate (FDR) < 0.1].
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grain production in the 20th century through the devel-
opment of high-yielding semidwarf cereals (Peng et al., 
1999; Sasaki et al., 2002). In rice, the most widely used 
gene for modifying plant architecture in modern variet-
ies is sd1, which encodes a 20-oxidase GA biosynthetic 
protein (Sasaki et al., 2002). A single nonsynonymous 
substitution within this gene has a drastic effect on 

plant architecture, resulting in a deficiency of bioactive 
GA and dwarf stature (Sasaki et al., 2002). In our study, 
GWAS provided evidence for GA in the regulation of 
early vigor; however, the effects of the QTLs were minor 
compared with that of sd1. A QTL at ~25.2 Mb on chro-
mosome 2 was associated with r during the early tiller-
ing stage and harbored a GA catabolic gene, OsGA2ox7 

Fig. 8. Prediction accuracies for model parameters during the early and active tillering stages of rice. Prediction accuracy was deter-
mined by using a fivefold cross-validation for each of the 14 sets of single-nucleotide polymorphisms (SNPs). The values represent the 
mean correlation between the genomic estimated breeding values and the observed values for the validation population for 20 itera-
tions of the fivefold cross-validation.

Fig. 7. Comparison of genomic estimated breeding values (GEBVs) and observed phenotypes for model parameters at the early (A–C) 
and active tillering stages (D–F) of rice [M0 (A, D), r (B, E),  (C, F)]. Genomic estimated breeding values were estimated using all 36,901 
markers using a training population of 288 accessions. The black open points in each figure represent the accessions in the training 
population; filled red points indicate accessions in the validation population (72 accessions). ET, early tillering; AT, active tillering.
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(Busov et al., 2003; Lo et al., 2008; Rieu et al., 2008; Wud-
dineh et al., 2015). Lo et al. (2008) showed that higher 
expression of OsGA2ox7, relative to wild-type plants, 
resulted in reduced stature and growth rate. In our study, 
accessions belonging to the major allele group displayed 
significantly higher expression of this gene, slower 
growth rate during the early tillering stage, and lower 
GA4 levels, which is consistent with the previous report 
for OsGA2ox7 (Lo et al., 2008).

Improving early vigor has remained a major chal-
lenge in rice breeding programs because of the complex 
genetic basis and large genotype-by-environment effect. 
GWAS has proven to be an indispensible approach to 
identifying causal genes underlying traits in a variety 
of different organisms. Genomewide association is par-
ticularly effective for traits that are regulated by a few 
loci with large effects (Korte and Farlow, 2013). Several 
loci were identified for model parameters and PSA that 
harbored genes known to regulate growth in rice and 
other species but despite the moderate to high heritabil-
ity observed for the traits, each individual locus only 
explained a small portion of the phenotypic variation 
for the trait. These patterns are typical of complex poly-
genic traits. With this type of genetic architecture, single 
marker strategies (e.g., marker-assisted selection) may 
not be the most effective approach for genetic improve-
ment. Genomic selection, on the other hand, does not 
focus on individual markers and thus is a more effective 
approach to breeding for traits controlled by many loci 
with small effects compared with marker-assisted selec-
tion (Jannink et al., 2010). Prediction accuracies for PSA 
and model parameters were relatively high, ranging from 
0.39 to 0.73, which indicates that GS may be an effective 
strategy for improving shoot growth dynamics in rice. 
Moreover, high prediction accuracies were obtained by 
using a subset of informative markers from association 
mapping, which may further reduce genotyping costs.

This study provides insights into the complex genetic 
architecture and molecular mechanisms underlying early 
shoot growth dynamics in rice. Although early vigor 
is of interest in many breeding programs, the complex 
genetic basis, the temporal component of the phenotype, 
and large genotype × environment effects have hindered 
genetic improvement. The evaluation of large mapping 
populations in a controlled environment using nonde-
structive phenomics provides high-resolution phenotypic 
data and reduces the influence of the environment on 
this complex trait. Moreover, the use of a large diversity 
panel allows for a greater allelic diversity to be queried, 
thus providing broader insight into the genetic basis of 
this trait than that from studies using biparental popula-
tions. Our study presents a foundational approach for 
the elucidation of vegetative growth dynamics and early 
vigor in rice. The approach of combining high-resolution 
image-based phenotyping coupled with functional map-
ping and genome prediction could be widely applicable 
for complex traits across numerous crop species.
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File S1: Phenotypic data for PSA and model parameters 
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File S2: Pearson correlation coefficients for model 
parameters and PSA.

File S3: Genomewide association results for daily 
measurements of PSA. The values in each column represent 
the –log10p-value for each SNP. 
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tillering stages.
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parameters.
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File S7: Prediction accuracies for daily measurements 
of PSA during the early and active tillering stages.

Figures S1–S28. Comparison of genomic estimated 
breeding values (GEBV) and observed phenotypes for 
projected shoot area (PSA). GEBV were estimated using 
all 36,901 markers using a training population of 288 
accessions. The black open points in each figure represent 
the accessions in the training population; the filled red 
points indicate accessions in the validation population (72 
accessions). ET, early tillering; AT, active tillering.
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