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Abstract

The accessibility of high‐throughput phenotyping platforms in both the greenhouse and

field, as well as the relatively low cost of unmanned aerial vehicles, has provided

researchers with an effective means to characterize large populations throughout the

growing season. These longitudinal phenotypes can provide important insight into plant

development and responses to the environment. Despite the growing use of these new

phenotyping approaches in plant breeding, the use of genomic prediction models for lon-

gitudinal phenotypes is limited in major crop species. The objective of this study was to

demonstrate the utility of random regression (RR) models using Legendre polynomials

for genomic prediction of shoot growth trajectories in rice (Oryza sativa). An estimate of

shoot biomass, projected shoot area (PSA), was recorded over a period of 20 days for a

panel of 357 diverse rice accessions using an image‐based greenhouse phenotyping

platform. A RR that included a fixed second‐order Legendre polynomial, a random

second‐order Legendre polynomial for the additive genetic effect, a first‐order Legendre
polynomial for the environmental effect, and heterogeneous residual variances was used

to model PSA trajectories. The utility of the RR model over a single time point (TP)

approach, where PSA is fit at each time point independently, is shown through four pre-

diction scenarios. In the first scenario, the RR and TP approaches were used to predict

PSA for a set of lines lacking phenotypic data. The RR approach showed a 11.6%

increase in prediction accuracy over the TP approach. Much of this improvement could

be attributed to the greater additive genetic variance captured by the RR approach. The

remaining scenarios focused forecasting future phenotypes using a subset of early time

points for known lines with phenotypic data, as well new lines lacking phenotypic data.

In all cases, PSA could be predicted with high accuracy (r: 0.79 to 0.89 and 0.55 to 0.58

for known and unknown lines, respectively). This study provides the first application of

RR models for genomic prediction of a longitudinal trait in rice and demonstrates that RR

models can be effectively used to improve the accuracy of genomic prediction for com-

plex traits compared to a TP approach.

K E YWORD S

genetics, genomic prediction, high-throughput phenotyping, phenomics

This manuscript has been released as a preprint on bioRxiv (https://doi.org/10.1101/319897).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2018 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.

Received: 14 May 2018 | Revised: 12 July 2018 | Accepted: 17 July 2018

DOI: 10.1002/pld3.80

Plant Direct. 2018;1–11. wileyonlinelibrary.com/journal/pld3 | 1

mailto:
https://doi.org/10.1101/319897
http://creativecommons.org/licenses/by/4.0/
http://www.wileyonlinelibrary.com/journal/PLD3


1 | INTRODUCTION

With the advent of next‐generation sequencing technologies, the

biology community has experienced a rapid increase in the amount

of genotypic data that is available. These developments, along with

the low cost of sequencing, have encouraged the adoption of geno-

mic selection (GS) approaches in plant breeding. With these

approaches, genome‐wide SNP markers are used to estimate an indi-

viduals additive genetic contribution to a given trait, and genotyped

individuals can be selected and advanced to further generations

without phenotypic evaluation (Endelman, 2011; Jannink, Lorenz, &

Iwata, 2010; Meuwissen, Hayes, & Goddard, 2001). Although these

approaches have increased genetic gain through the acceleration of

breeding cycles, considerable resources must still be devoted to the

accurate phenotypic evaluation of individuals (Furbank & Tester,

2011). This necessary step remains a major bottleneck for many

breeding programs.

In recent years, considerable investment, in both the public and

private sector, has been made to automate the phenotypic charac-

terization of large populations. Large investments have been made

to build high‐throughput phenotyping facilities in both the green-

house and field where highly controlled water, nutrient, or tempera-

ture regimes can be applied to individual plots, and plants can be

routinely monitored throughout the development using imaging.

Moreover, the relatively low cost of drones that can be fitted with

cameras and other sensors has provided researchers with an effec-

tive means to characterize large populations throughout the growing

season (Chapman et al., 2014; Furbank & Tester, 2011; Watanabe et

al., 2017; Zhang et al., 2016). These longitudinal phenotypes can

provide important insight into the mechanisms that underlie physio-

logical responses to environmental stresses and developmental pro-

cesses, and can be leveraged to improve prediction accuracies for

complex polygenic traits, such as yield that have been a target for

most breeding programs (Campbell et al., 2017; Fahlgren, Gehan, &

Baxter, 2015; Sun et al., 2017). Despite the growing use of these

new phenotyping approaches in plant breeding, the use of models

for genomic selection (GS) for longitudinal phenotypes is limited in

breeding major crop species. Most conventional field studies involve

one or a few evaluations throughout the growing season, thus

repeated phenotypic measurements on the same plant or plot are

relatively rare.

Several approaches have been utilized for GS using longitudinal

data. A simple repeatability (SR) model was used by Sun et al. (2017)

and Rutkoski et al. (2016) for secondary longitudinal traits. The SR

model treats each time point as a repeated measure of the same

trait and assumes that the variance for all records is equal and the

correlation between time points is constant. However, for many

traits recorded across many time points, the assumption behind SR

model is not realistic. A multivariate approach can be extended to

longitudinal data. However, the computational complexity of the

multivariate approach increases with the number of time points and

becomes unfeasible with high frequency longitudinal traits due to

the large number of parameters to estimate. Often, the number of

observations necessary to accurately estimate parameters exceeds

the size of most studies.

Random regression (RR) models have proven to be an attractive

alternative to the above methods and have been utilized in livestock

and tree breeding (Apiolaza, Gilmour, & Garrick, 2000; Bermejo et al.,

2003; Bohmanova, Miglior, Jamrozik, Misztal, & Sullivan, 2008; Costa

et al., 2008; Howard et al., 2015; Nobre et al., 2003; Wetten,

Ødegård, Vangen, & Meuwissen, 2012). Here, covariance functions

are explicitly defined that are equivalent to the full covariance matrix

of the trait across time points (Kirkpatrick, Lofsvold, & Bulmer, 1990;

Meyer, 1998). Covariance functions include, but are not limited to

banded correlation, autoregressive models, orthogonal polynomials, or

spline functions (Apiolaza et al., 2000; Meyer, 1998). Thus, these mod-

els utilize a few parameters to describe the full covariance and are

much more computationally efficient. In animal breeding, RR models

have been used extensively to estimate heritabilities and perform

pedigree‐based prediction of important longitudinal traits such as

growth, feed intake, fat, and milk production (Bermejo et al., 2003;

Bohmanova et al., 2008; Costa et al., 2008; Howard et al., 2015;

Nobre et al., 2003; Wetten et al., 2012).

The increased accessibility to high‐throughput phenotyping plat-

forms provides the plant science community with high frequency

temporal measurements for complex polygenic phenotypes. These

data are very different from those typically used for genomic predic-

tion in which phenotypes are recorded at a single time point or at

harvest for large populations. However, the availability of these new

data presents an opportunity to extend these approaches used

extensively for longitudinal traits in animal breeding to major crops.

Here, we demonstrate the use of RR models to predict shoot growth

trajectories in a rice diversity panel. Specifically, the aims of this

study were to (a) examine the advantage of utilizing longitudinal

phenotypes over single end‐point measurements (cross‐sectional GS),
(b) determine whether longitudinal phenotypes collected during early

time points can be used to predict phenotypes at later time points

(i.e., forecasting lines with records), and (c) predict future phenotypes

for new lines using early records for existing lines.

2 | MATERIALS AND METHODS

2.1 | Plant materials and greenhouse conditions

Three hundred seventy‐eight lines of the Rice Diversity Panel 1 were

selected for this study (Zhao et al., 2011). Seed propagation is described

in Campbell et al. (2015). Three uniformly germinated seedlings were

selected and transplanted to pots (150 mm diameter × 200 mm height)

filled with approximately 2.5 kg of UC Mix (the actual weight varied

from experiment to experiment by 100–200 g). Square containers were

placed below each pot to allow water to collect.

2.2 | Experimental design

All experiments were conducted at the Plant Accelerator, Australian

Plant Phenomics Facility, at the University of Adelaide, SA, Australia.
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Each experiment consisted of 378 lines and was repeated three

times from February to April 2016. Two smarthouses were used for

each experiment, with 216 pots positioned across 24 lanes in each

smarthouse. Each experiment consisted of a partially replicated

design, with 54 randomly selected lines having two replicates in each

experiment.

Seven days after transplant (DAT), plants were thinned to one

seedling per pot. Two layers of blue mesh were placed on top of the

pots to reduce soil water evaporation. The plants were loaded on

the imaging system and were watered to 90% field capacity at 11

DAT.

2.3 | Image analysis

The plants were imaged daily from 13 to 33 DAT using a visible

(red–green–blue camera; Basler Pilot piA2400–12 gc, Ahrensburg,

Germany) from two side‐view angles separated by 90° and a single

top view. The three experiments produced a total of 72,537 images.

“Plant pixels” were extracted from RGB images using the LemnaGrid

software. In brief, “plant pixels” were extracted from background

objects using a color classification strategy. Two set of colors were

chosen manually to represent plant and background objects. For

each image, pixels were assigned as background or plant pixels using

the nearest‐neighbor method. For a given pixel, this method assigns

the pixel to a predefined color by finding the most similar (smallest

Euclidean distance) color in the set. Noise (i.e., small areas of non‐
plant pixels) in the image is removed using a series of erosion and

dilation steps.

The sum of the “plant pixels” from the three RGB images was

summed, and used as a measure of shoot biomass. Here this trait is

referred to as projected shoot area (PSA). This metric has been

shown to be an accurate representation of shoot biomass (Campbell

et al., 2015; Golzarian et al., 2011; Knecht, Campbell, Caprez, Swan-

son, & Walia, 2016). Prior to downstream analyses, outlier plants at

each time point were detected for each trait using the 1.5(IQR) rule.

Plants that were flagged as potential outliers were plotted and

inspected visually. Those that exhibited abnormal growth patterns

were removed. A total of 32 plants were removed, leaving a total of

2,604 plants for downstream analyses.

2.4 | Selection of random regression models

PSA was modeled across all 20 time points using several RR models.

Following the notation of Mrode (2014), the RR models can be sum-

marized as

PSAtjk ¼ μþ∑2
k¼0ϕðtÞjkβk þ∑nr

k¼0ϕðtÞjkujk þ∑nr
k¼0ϕðtÞjksjk þ etjk

here β is the fixed second‐order Legendre polynomial to model the

overall trend in the trait overtime, ujk and sjk are the kth random

regression coefficients for additive genetic effect and random experi-

ment of line j, nr is the order of polynomial for the random effects,

and etjk is the random residual. The order of β was selected based

on visual inspection of the trends. Various polynomial functions and

residual variance structures were evaluated for line and experiment,

and residuals, respectively. A complete description of the models is

provided in Supporting Information Table S1. For each trait, the

models were ranked based on goodness‐of‐prediction using Akaike's

information criterion (AIC) scores (Akaike, 1974).

2.5 | Genomic selection at each time point

A mixed model approach was used to fit genomic best linear unbiased

predictions (gBLUPs) at each time point using the following model.

y ¼ ZuþQsþ e;

here, y is the PSA at time t; Z and Q are incidence matrices corre-

sponding to the random additive genetic effect (u), and random

experimental effect (s), respectively; and e is the random residual

error. For the random terms, we assume u∼Nð0;Gσ2g Þ, s∼Nð0; Iσ2s Þ,
and e∼Nð0; Iσ2e Þ. Here, σ2g is the additive genetic variance; σ2s is an

environmental variance associated with experiment; and σ2e is the

residual variance. A genomic relationship matrix (G) was calculated

following VanRaden (2008).

G ¼ ZcsZ
0
cs

m

here, Zcs is a centered and scaled n × m matrix, where m is 33,674

SNPs and n is the 357 genotyped rice lines.

2.6 | Genomic selection using random regression

For each trait, the “best” random regression model was used to pre-

dict gBLUPs. The following mixed model was used to predict

gBLUPs

PSAtjk ¼ μþ∑2
k¼0ϕðtÞjkβk þ∑2

k¼0ϕðtÞjkujk þ∑1
k¼0ϕðtÞjksjk þ etjk

The variables are the same as in Section 2.4, however, note that

nr has been replaced with 2 and 1 for the additive genetic and

experiment effect, respectively. Thus the random additive genetic

effects are described using a second‐order Legendre polynomial,

while a first‐order Legendre polynomial is used to describe the

experiment effects across time points.

In matrix notation, the model is

y ¼ ZuþQsþ e;

with all vectors and matrices defined as above. However here u is

now a vector of random regression coefficients for the additive

genetic effects. For the random terms, we assume u∼Nð0;G�ΩÞ,
s∼Nð0; I� PÞ, and e∼Nð0; I�DÞ. Here, Ω is a 3 × 3 covariance

matrix of random regression coefficients for additive genetic effects;

P is a 2 × 2 covariance matrix of random regression coefficients for

experiment effect; and D is a diagonal matrix allowing for heteroge-

neous variances over time points. Z and Q are covariable matrices

where the ith row contains the orthogonal polynomials for the ith

day of imaging. Thus, matrix Z is the covariable matrix for the addi-

tive genetic effects with a dimension of t × nk where nk is the order
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of Legendre polynomial for the additive genetic effect multiplied by

the number of individuals with phenotypic records and t refers to

the number of days of imaging. Similar to that, Z is a t × ns covari-

able matrix for the experiment effect, where ns is the the order of

the Legendre polynomial for the experiment effect (e.g., 1) time the

number of experiments (e.g., 3). Variance components and gBLUPs

were obtained using ASREML (Release 4.0) (Gilmour, Gogel, Cullis,

Welham, & Thompson, 2015).

Using the method above, variance components were obtained

for additive genetic and environmental components. For the additive

genetic term, each line has three random regression coefficients (nr =

0,1,2). gBLUPs were predicted at each time point according to

Mrode (2014). For a given line, j, at time t the gBLUPs can be

obtained by gBLUPjt ¼ ϕtûj; where ϕt is the row vector of the matrix

of Legendre polynomials of order 2.

2.7 | Estimation of narrow sense heritability

To estimate the narrow sense heritability, variance components were

obtained for each random term using ASREML for the TP analyses

and the RR approach. For the RR approach, additive genetic variance

was obtained at each time points using methods described by Mrode

(2014). In brief, for time i the genetic variance can be obtained by

tiΩt0i , where ti ¼ ϕik , the ith row vector of the matrix of Legendre

polynomials at different time points (φ) for the ith day of imaging, Ω
is the covariance matrix of RR coefficients for the genetic effects,

and k is the order of fit. The variance of the experimental effect

across time points was calculated using the same approach. For both

the single time point analysis h2 was estimated as σ2g=ðσ2g þ σ2s þ σ2e Þ.

2.8 | GS scenarios and cross‐validation

Four scenarios were tested using GS (Figure 1). In the first scenario

(scenario A), all 20 time points were used to fit a RR model and phe-

notypes were predicted for a set of lines without phenotypic

records. The second scenario (scenario B), the dataset was split into

two datasets each consisting of 10 consecutive time points. A RR

model was fitted using the first 10 time points and was used to pre-

dict the phenotypes for the same set of lines in the last 10 time

points. Scenario C can be thought of as a combination of scenarios

A and B. Here, the dataset was split into four subsets, with each

quadrant consisting of 178 to 179 lines and 10 time points. Here, a

RR model was fitted using 10 early time points for half the lines with

known phenotypes and was used to predict the phenotypes in the

last 10 time points for the remaining 178 to 179 lines. At last, in the

last scenario (Scenario D) we sought to predict the shoot biomass at

a later time points in an independent study. This can be thought of

as forecasting for new lines in an independent study. A publicly

available dataset was used in which 359 lines (357 lines in common

between the two studies) were phenotyped from 20 to 40 days

after transplant, thus a 13 day overlap was available for the two

datasets, and a RR model was fitted using phenotypic information

from the time points in the first experiment for 179 lines, and was

used to predict gBLUPs for the remaining 178 lines in a second

independent experiment described by (Campbell et al., 2017).

To assess the accuracy of gBLUPs for the TP GS as well as sce-

narios A, C, and D, a two‐fold cross‐validation approach was used. In

brief, the 357 lines were split into two sets, with one serving as a

training set with known phenotypes and the second serving as a

testing set with unknown phenotypes. Since the number of lines

was not even the remaining line was assigned to the training set.

The accuracy of prediction was assessed by comparing predicted

gBLUPs with observed PSA at each of the three experiments using

Pearson's correlation method. The lines were randomly assigned to

each fold, and the process was repeated 20 times. For each fold, the

average correlation over the three experiments was used, and the

average over the two folds was used for each resampling run. For

scenario B, half of the lines were randomly selected and the first 10

time points were used to predict the phenotypes in the last 10 time

points for the same lines. Again, the variance in prediction accuracy

was assessed by randomly sampling half the lines for analysis. Pear-

son's correlation was computed for the gBLUPs and PSA as

described above.

3 | RESULTS

A rice diversity panel was phenotyped over a period of 20 days dur-

ing the early vegetative stage using an automated high‐throughput
phenotyping platform. The panel consists of 357 lines from 80 coun-

tries and captures much of the genetic diversity within cultivated

rice (Zhao et al., 2011).

The plants were imaged each day using RGB cameras from three

angles (two side‐view angles separated by 90° and one top view).

The plant pixels from each image were summed and used to esti-

mate shoot biomass. Here, this metric is referred to as PSA and has

been shown to be an accurate measure of shoot biomass in cereals

(Berger, Parent, & Tester, 2010; Campbell et al., 2015). This experi-

ment captures the early vegetative stage of development, where

shoot biomass increases nearly exponentially (Figure 2a, Supporting

Information Figure S1).

3.1 | Random regression model selection

RR models have been used extensively to model longitudinal pheno-

types in animal breeding. These models are particularly advantageous

in that differences in the shape of the curve can be accounted for,

and can be solved using the conventional mixed model framework.

Thus, in the scope of genetics, these models allow for inter‐indivi-
dual variation in the mean trend to be estimated. Here, the overall

mean growth trend was modeled using a second‐order Legendre

polynomial. A total of eight models were evaluated to identify a

model that adequately described the data and could be used for GS.

Each model included a fixed second‐order Legendre polynomial to

describe the overall mean growth trend, while several Legendre

polynomials ranging from zero to second‐order Legendre polynomials
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were fitted for random genetic and experimental effects. The resid-

ual effects were assumed to be constant or heterogeneous across

time points using an identity or diagonal matrix, respectively. The

“best” model was selected based on the smallest AIC value. Support-

ing Information Table S1 provides an overall summary of the models

and the corresponding AIC values. The “best” model (Model 8) was

one that included a fixed second‐order polynomial to model the

mean trend in shoot growth, a second‐order Legendre polynomial

for the random additive genetic effect, a first‐order Legendre poly-

nomial for the experimental effect, and the residual variance was
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F IGURE 2 Projected shoot area (PSA) across 20 days of imaging.
(a) Population mean for PSA across the 20 days of imaging. Here,
the shaded region represents the standard deviation of PSA at each
time point. (b) Predicted PSA for two contrasting lines using a
random regression (RR) model. The RR model included a fixed
second‐order polynomial to model the mean trend in shoot growth,
a second‐order Legendre polynomial for the random additive genetic
effect, a first‐order Legendre polynomial for the experimental effect,
and the residual variance was assumed to be heterogeneous over
time points. The predicted RR coefficients for each line are provided
in the figure legend. The shaded regions represent the standard
error of predicted PSA at each time point. Here, PSA is defined as
the sum of plant pixel from three images (two side‐view images and
one top view). The shaded region represents the standard deviation
of PSA at each time point

F IGURE 1 Graphic representation of cross‐validation schemes for
predicting longitudinal phenotypes using random regression. In (a), (c),
and (d), two‐fold cross‐validation was used, where phenotypes for 179
lines were used as a training set to predict phenotypes for the
remaining 178 lines. In (a), all 20 time points for the training set were
used to predict the phenotypes at each of the 20 time points for an
new set of lines. The second scenario (b) can be thought of as a
forecasting approach where the dataset was split into two longitudinal
datasets each consisting of 10 time points. The first 10 time points for
179 lines and were used to predict the phenotypes at the last 10 time
points for the same 179 lines. In (c), a forecasting approach was again
used, however, the lines were randomly split in two, and the first 10
time points were used to predict phenotypes in the last 10 time points
for a group of new lines. In (d), the first 20 time points were used to
predict gBLUPs at a later time points in an independent study. Here, a
publicly available dataset was used as a testing set in which 357 lines
were phenotyped from 20 to 40 days after transplant, thus a 13‐day
overlap was available for the two datasets. Here, the independent
dataset is indicated with PSALaterVeg. Excluded indicates that these
data points were not included for analyses
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assumed to be heterogeneous over time points. Figure 2b shows the

predicted PSA obtained with model 8 for two lines with contrasting

genetic values for the RR coefficients.

3.2 | Genetic correlation and narrow sense
heritability of PSA

To examine the relationship for PSA between time points, the pheno-

typic and genetic correlation was estimated. Estimates for the overall

phenotypic correlations were high (r: 0.49–1.0), with the highest corre-

lation observed between adjacent time points (Figure 3a). The genetic

correlation followed a similar patten, with an overall high correlation (r:

0.84–1.0) observed among pairwise comparisons of all 20 time points.

As above, adjacent time points exhibited the highest genetic correla-

tion (r = 1), while those further apart exhibited lower correlation (Fig-

ure 3b). In an interesting manner, a strong genetic correlation was

observed between day 1 and day 20 (r = 0.91), indicating that shoot

growth (e.g., PSA) may be driven by similar genetic mechanisms at the

early seedling and active tillering stage in rice.

To evaluate the ability of the longitudinal RR approach to cap-

ture additive genetic variance, the narrow sense heritability of PSA

was estimated using the RR model described above and a conven-

tional mixed model at each time point. The mixed model included

random terms for the additive genetic and experimental effect. For

both models, a genomic relationship matrix was generated using

33,674 markers for the 357 lines. On average, the RR approach

showed a 44% increase in the heritability of PSA compared to the

TP approach (Figure 4). The TP approach showed a mean h2 of 0.50

over all time points, while the RR approach showed h2 of 0.71 on

average. h2 ranged from 0.60 to 0.77 for the RR approach, while h2

ranged from 0.46 to 0.57 for the TP approach. The two approaches

showed nearly identical h2 estimates on day 1, however, at later

time points h2 of RR was considerably higher than TP. These results

suggest that the RR approach captures more additive genetic vari-

ance for PSA than the TP approach.

3.3 | Utility of longitudinal phenotypes for genomic
prediction

The availability of high‐throughput phenotyping platforms provides a

means to accurately phenotype large populations for a number of

traits throughout time. While phenotypes recorded at a high fre-

quency over time will likely improve the accuracy of GS, few reports

have demonstrated the advantages of longitudinal phenotypes in

major crops or model plant systems. Here, the utility of longitudinal

phenotypes for GS was evaluated under four hypothetical scenarios

(Figure 1). The first scenario can be thought of as a standard GS

approach (Figure 1a). Here, all 20 time points for half of the 357 lines

used to predict the phenotypes at all 20 time points for the remaining

lines. The aim of scenario A is to determine whether the longitudinal
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F IGURE 3 Phenotypic and genetic correlations between each time point. (a) Phenotypic correlations were estimated between time points
using Pearson's method. (b) The inferred genetic correlation matrix of random regression terms for the additive genetic effects was used to
estimate the genetic correlations between time points. The scale on the left of each panel indicates the strength of the correlations (r)
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RR approach provides greater prediction accuracy than a cross‐
sectional GS approach in which a mixed model is fit at each time point.

The first training set can be thought of as existing lines with pheno-

typic records and the test population as a new set of lines without

records. The aim of scenario B (Figure 1b), is to determine if traits at

later time points can be predicted for known lines using information at

early time points. Thus, it can be considered as a forecasting approach.

Here, longitudinal phenotypes are available for lines during the early

time points (1–10 days of imaging), and are used to predict pheno-

types for the same lines at later time points. Scenario C (Figure 1c),

can also be considered a forecasting approach however for new lines.

Here a subset of lines with phenotypes during the first 10 time points

are used to predict the phenotypes for new lines without phenotypes

at the later time points. In scenario D (Figure 1d), we sought to predict

the shoot biomass at a later time points in an independent study.

Here, a publicly available dataset was used in which 359 lines (357

lines in common between the two studies) were phenotyped from 20

to 40 days after transplant, thus a 13‐day overlap was available for

the two datasets. A RR model was fitted using phenotypic information

from the time points in the first experiment for 179 lines and was used

to predict gBLUPs for the remaining 178 lines in the second

experiment.

3.4 | Scenario A: Comparison between longitudinal
RR and cross‐sectional GS

To evaluate the advantages of using the longitudinal phenotype for

PSA for GS over a single time points, the prediction accuracy of the

RR model described above was compared to a conventional cross‐sec-
tional approach in which the additive genetic effects were estimated

at each time point. For both approaches, two‐fold cross‐validation was

performed in which half the lines were randomly selected as a training

set, and the remaining half was used for prediction. Pearson's correla-

tion was used to assess the accuracy between predicted gBLUPs and

observed PSA in the test set for each experiment. The average correla-

tion across all three experiments was determined for each fold. The

resampling process was repeated 10 times.

Overall, the RR model showed significantly higher predication

accuracies than the TP approach (Figure 5a). On average, the longi-

tudinal phenotype improved prediction accuracy by 11.6% (mean

across all time points) compared to the TP approach. The prediction

accuracies for the TP approach ranged from 0.40 to 0.60, while for

the RR approach accuracies ranged from 0.47 to 0.58. Although the

TP approach exhibited low prediction accuracies during the early

time points and increasing prediction accuracies toward the end of

the study, the prediction accuracy for the RR model remained rela-

tively constant with a slight increase in r observed from day 1 to 9.

The largest improvements in prediction accuracy was observed

between 5 to 10 days of imaging, with the RR model showing 35%

higher accuracy at day 8 compared to the TP approach. Collectively,

these results indicate that RR models can be used to improve the

accuracy of genomic prediction for longitudinal phenotypes.

3.5 | Scenario B: Forecasting existing lines

Here, the objective is to predict future phenotypes for lines with

phenotypic trajectories recorded earlier in the growing season or

development. To this end, the dataset was separated into two, with
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F IGURE 4 Narrow sense heritability and variance components
estimated using the single time point (TP) and random regression
(RR) approaches. The narrow sense heritability (h2) is presented in
panel a. Variance components for the TP and RR approaches are
pictured in panels b and c, respectively. For the single time point
analysis, a conventional mixed model was used to estimate the
narrow sense heritability of PSA at each time point. The TP model
included a random additive genetic effect and experimental effect.
The RR model included a fixed second‐order Legendre polynomial,
the random additive genetic effect was modeled using a second‐
order Legendre polynomial, a first‐order random effect was used for
experiment, and the residual variance was assumed to be
heterogeneous over time points. For both models, the experimental
term was considered as an environmental effect
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the first 10 time points serving as a training set to predict the phe-

notypes for the last 10 days. This approach is described in Figure 1b.

The RR model described above was fit to the data. To assess the

accuracy of prediction, two‐fold cross‐validation was performed in

which 50% of the lines were randomly selected for training and pre-

diction, and the resampling process was repeated 10 times. The

accuracy of prediction was very high, ranging from 0.79 to 0.82 for

the last 10 time points without phenotypic records (Figure 5b). A

slight decline in prediction accuracy was observed after day 10, with

day 11 exhibiting the highest accuracy (r = 0.82) and the lowest

accuracy on day 20 (r = 0.79). This trend in prediction accuracy is

expected, given that the phenotypic records at day 11 should be

very highly correlated with those at day 10, with the correlation

declining as time progresses. The high predictive ability observed

indicates that the first 10 time points is sufficient to accurately pre-

dict future phenotypes for known lines.

3.6 | Scenario C: Forecasting new lines

As shown above, future phenotypes can be accurately predicted

from longitudinal traits at early time points for existing lines. While

the knowledge of performance of known lines at future time points

may be beneficial in some applications, GS is most often used to

select lines without prior knowledge of the phenotype. Previously in

scenario A, we showed that phenotypes could be predicted accu-

rately for new lines using the complete longitudinal phenotype. Here,

the aim is to predict future phenotypes for new lines with no pheno-

typic records using early phenotypic records for existing lines. To

this end, the dataset was partitioned into two temporal datasets,

with the first 10 time points serving as a training set to predict the

phenotypes for the last 10 days (Figure 1c). As above, a two‐fold
cross‐validation approach was used to assess prediction accuracy.

Half the lines were randomly assigned to each fold, and the first 10
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F IGURE 5 Prediction accuracies of scenarios a to d. (a) Comparison of prediction accuracies for TP and RR approaches. For the random regression
(RR) approach, a RR model was fit using phenotypic records for 178–179 lines over 20 days. A univariate single time point (TP) was performed using
phenotypic records for 178–179 lines at each day. In both cases, genetic effects from each model were used to predict gBLUPs for the remaining 178–
179 lines, and prediction accuracy was assessed using Pearson’s correlation between the predicted gBLUPs and observed PSA for the test set.
Resampling was carried out 20 times. (b) Forecasting future phenotypes using phenotypic information at early time points for known lines. Here, a RR
model was fit using phenotypic information for 178–179 lines for the first 10 time points, and was used to predict PSA for the same lines at the last 10
time points. Prediction accuracy was assessed using Pearson’s correlation between the predicted gBLUPs and observed PSA. (c) Forecasting future
phenotypes using phenotypic information at early time points for new lines. As in scenario b, a RR model was fit using phenotypic information for 178–
179 lines for the first 10 time points, however the genetic effects were used to predict PSA at the last 10 time points for the remaining 178–179 lines
in the test set. Prediction accuracy was assessed using Pearson’s correlation between the predicted gBLUPs and observed PSA for the test set. (d)
Prediction accuracies for forecasting future phenotypes in an independent study using phenotypes from an earlier developmental period. Here, a RR
model was fit using phenotypic information from the first 20 time points for 178–179 lines and was used to predict PSA in an independent study at a
later developmental stage for the remaining 178–179 lines. In all panels the error bars represent the standard deviation where n = 20
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time points from the first fold were used to predict the phenotypes at

the last 10 time points in the second fold. The prediction accuracies

for scenario C were very similar to those observed for scenario A.

Accuracies ranged from 0.48 to 0.57, with the prediction accuracy

ranging from 0.55 to 0.57 in the last 10 days (Figure 5c). The predic-

tion accuracies showed a slight increase from day 1 to day 9. The high-

est prediction accuracy was observed at day 15, while the lowest

accuracy was observed at day 1. These results suggest that future phe-

notypes can be forecast for new lines with reasonable accuracy using

phenotypic records from earlier time points for a set of known lines.

3.7 | Scenario D: Forecasting new lines at later
time points in an independent study

In scenario C, we have shown that gBLUPs for new lines can be

accurately predicted using phenotypes for a set of known lines at a

subset of early time points. Here, the objective was to expand this

approach and evaluate the utility of the RR model to predict gBLUPs

for new lines at future time points in an independent study. Here,

we utilized an existing dataset where 359 lines from the Rice Diver-

sity Panel 1 were phenotyped from 20 to 40 days after transplant

(Figure 1d). Although there is overlap between developmental stages

of this dataset and the dataset used for scenarios A–C, this experi-

ment was conducted at a different time of year and therefore the

photoperiod and light intensity should be different between the two.

A RR model was fitted that was identical to that used for scenar-

ios A–C, in that it included a fixed second‐order polynomial to model

the mean trend in PSA, a second‐order Legendre polynomial for the

random additive genetic effect, a first‐order Legendre polynomial for

the random experimental effect, and a heterogeneous residual vari-

ance over time points. The RR model was fitted using phenotypes

for 179 lines from the early vegetative stage experiment (i.e., 13 to

32 DAT), and the genetic values for the RR coefficients were used

to predict the phenotypes for the remaining 178 lines in the second

experiment (i.e., 20 to 40 DAT). A two‐fold cross‐validation approach

was used in which phenotypes across all 20 days were selected for

179 lines in the first experiment and were used to predict gBLUPs

for the remaining 178 lines in the second experiment.

The prediction accuracy was high with r values ranging from

0.51 to 0.59 (Figure 5d). The prediction accuracy was relatively con-

stant, but showed a slight increase in accuracy from 22 to 29 days

after transplant. An increase in the prediction accuracy was observed

from 13 to 31 DAT, after which the prediction accuracy declined

slightly. The second time point (22 DAT) exhibited the lowest predic-

tion accuracy (r = 0.51). The highest prediction accuracy was

observed on day 34 after transplant (r = 0.59). Collectively, these

results suggest that longitudinal phenotypes can be accurately pre-

dicted in an independent study using the RR approach.

4 | DISCUSSION

High‐throughput phenotyping platforms provide an accessible means

to record traits non‐destructively for large populations throughout

development. Such longitudinal data provide an opportunity to under-

stand the genetics of the development of a phenotype and identify

individuals that exhibit desirable trait trajectories. However, such data

provides new challenges to adapt approaches utilized for single time

point phenotypes in plant genomics and breeding to accommodate

longitudinal data. This study provides the first application of RR mod-

els for genomic prediction of a longitudinal trait in rice.

4.1 | Advantages of RR over univariate genomic
prediction

The predictive ability in GS is dependent on the heritability of the

trait, the number of markers, population size, linkage disequilibrium

(LD), and the number of QTL influencing the trait (Daetwyler, Pong‐
Wong, Villanueva, & Woolliams, 2010; Daetwyler, Villanueva, &

Woolliams, 2008). Here, the RR model using longitudinal phenotypes

provided greater prediction accuracy compared to the TP gBLUP.

The predictive ability of the RR approach improved prediction accu-

racies by 11.6% on average compared to TP analysis. The number of

markers, population size, LD, and the number of QTL influencing

PSA are held constant between the two models. Thus, the difference

in prediction accuracy hold be largely attributed to the differences in

heritability between the RR approach and TP analysis. As shown in

Figure 4, the RR approach accounted for more additive genetic vari-

ance than the TP analysis. Similar gains in heritability for height in

Swedish Scots pine has been reported by Wang, Andersson, and

Waldmann (2009) with RR models that utilize B‐splines or Legendre

polynomials over TP analyses. Moreover, when the prediction accu-

racy is expressed as the ratio of the correlation of gBLUPs and

observed PSA to the square root of h2, both approaches were nearly

equivalent (Supporting Information Figure S2). Thus, the higher pre-

diction accuracy is due to the higher h2 of the RR approach relative

to the TP approach.

With both methods (RR and TP), we observed high prediction

accuracies ranging from 0.4 to 0.6 (Arruda et al., 2015; Duhnen et

al., 2017; Kristensen et al., 2018; Leplat, Jensen, & Madsen, 2016).

While similar accuracies have been reported by other studies for

complex traits, it is important to note that the current study uti-

lized a diversity panel with considerable population stratification

and the prediction models did not account for population struc-

ture. Accounting for population structure is important in genome-

wide association studies to reduce spurious associations (Yu et al.,

2006). However, these corrections can often hinder the ability to

detect true QTL that are correlated with population structure

(Zhao et al., 2011). With GS, the aim is to achieve high prediction

accuracies across subpopulations rather than to detect QTL associ-

ated with the trait (Hayes, Bowman, Chamberlain, Verbyla, & God-

dard, 2009; Lorenz et al., 2011). Thus, the high prediction

accuracies observed for the models used in this study may be due,

in part, to population structure, however, the random sampling of

individuals across subpopulations during CV should reduce the pos-

sibility of having a training set that is strongly imbalanced by a

given subpopulation.
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4.2 | Utilizing RR prediction for forecasting phenotypes

The utilization of genomic information to predict future outcomes is

not new. Considerable effort in the field of personalized medicine

has been devoted to predict disease risks for individuals based on

genomic information. Here, disease‐associated loci are used to pre-

dict potential future outcomes for individuals (Moser et al., 2015).

The ability to predict future phenotypes using phenotypic informa-

tion collected early in the life cycle may be advantageous in plants,

particularly perennial species with long life cycles. Selection during

the early developmental stage can shorten evaluation times.

Here, we evaluated the ability of RR models to predict future phe-

notypes using phenotypic records collected during the early time

points. This was performed for known lines (e.g., those with early

records; Scenario B), as well as new lines (Scenario C and D). We

observed high prediction accuracies for each forecasting scenario. As

expected the highest accuracy was observed for Scenario B, in which

early phenotypic records are used to predict future phenotypes for the

same set of lines. In a surprising way, high prediction accuracies were

also observed when early records for known lines were used to predict

future phenotypes for unknown lines (Scenarios C and D). In both

cases, the accuracies were not significantly different from those

achieved when using phenotypic information for all time points. These

results collectively indicate that the future phenotypes can be accu-

rately predicted using a subset of the temporal phenotypes. While

these results are encouraging, these forecasting approaches will be

highly dependent on the temporal genetic architecture of the trait. The

lack of decline by utilizing only a subset of time points is likely due to

the high genetic correlation observed between time points. The similar

genetic architecture between the early and late time points that is evi-

denced by the strong positive genetic correlation (Figure 3b) estimated

between early (1–10 days) and late (11–20 days) time points. Thus, we

suggest to first evaluate the genetic correlation between time points

for the trait of interest before utilizing such forecasting approaches.

5 | CONCLUSION

High‐throughput phenomics platforms have provided the plant

science community with a means to generate high resolution tempo-

ral phenotypes for large populations at a relatively low cost. RR

models that utilize Legendre polynomials provide a flexible for geno-

mic prediction of longitudinal traits. These approaches provide sev-

eral advantages over single time point analyses: (a) these models

account for more additive genetic variance compared to the TP anal-

ysis, which translates to higher predictive accuracies; (b) future phe-

notypes can be accurately predicted using phenotypic information

for earlier time points for known and unknown lines.
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