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Abstract 
In many applications, such as gene co-expression network analyses, data arises with a huge 
number of covariates while the size of sample is comparatively small. To improve the accuracy 
of prediction, variable selection is often used to get a sparse solution by forcing coefficients of 
variables contributing less to the observed response variable to zero. Various algorithms were 
developed for variable selection, but LASSO is well known for its statistical accuracy, 
computational feasibility and broad applicability to adaptation. In this project, we applied 
LASSO to the gene co-expression network of rice with salt stress to discover key gene 
interactions for salt-tolerance related phenotypes. The dataset we have is a high-dimensional 
one, having 50K genes from 100 samples, with the issue of multicollinearity for fitting linear 
regression - the expression level of genes in the same pathway tends to be highly correlated. 
The property of LASSO with sparse parameters is naturally suitable to identify gene 
interactions of interest in this dataset. After biologically functional modules in the co-
expression network was identified, the major changed expression patterns were further 
selected by LASSO regression to establish a linear relationship between gene expression 
profiles and physiological responses, such as sodium/potassium condenses, with salt stress. 
Five modules of intensively co-expressed genes, from 45 to 291 genes, were identified by our 
method with significant P-values, which indicate these modules are significantly associated 
with physiological responses to stress. Genes in these modules have functions related to ion 
transport, osmotic adjustment, and oxidative tolerance. For example, LOC_Os7g47350 and 
LOC_Os07g37320 are co-expressed gene in the same module 15. Both are ion transporter 
genes and have higher gene expression levels for rice with low sodium levels with salt stress. 
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Introduction 

 Rice (Oryza sativa) is arguably the most important crop worldwide. Approximately 3.5 

billion people globally rely on the cultivation and distribution of rice for food and economic 

security. Given its economic importance, considerable efforts are are continually made to 

maximize productivity. However, envionmental factors such as drought, salninty, high heat, 

and submergence are major constrains, and account for X billion dollar losses each year.  

Rice highly sensitive to salt stress [1]. Both the quantity and quality of rice productivity 

could be severely reduced by mild salinity stress. This sensitivity is driven both by the osmostic 

effects of excessive Na in the soil on plant water realtions, as well as the toxic effects of Na+. 

Salt’s toxic effects contain two aspects: osmotic stress and ionic stress. Hyper osmosis caused 

by high concentrations of salt impedes water uptake. This constraint has an almost immediate 

impact on cell expansion and growth. The osmomtic effects of Na+ also reduce stomatal 

conductance, transpitation, and carbon assimilation. Due to the simialr physiochemic 

properties fo Na and K, Na may compete and displace K from in cellular processes. Over time, 

Na accumulates in cytoplasm, once a threshold is surpassed the function of the cell is 

comprimised and cell death occurs. In this stage, the growth of young leaves is delayed and 

the senescence of old leaves is accelerated.  

While few studies have identified physiological mechanisms that confer tolerance to the 

osmostic effects of salninty, numerous reports have documented several mechanisms to limit 

the toxic effects of Na on plant growth. Na toxicity can be mitigated by limiting the accumaltion 

of Na in leaf tissue via transporters localized to the vascular tissues in the root and shoot. 

Moreover, Na may be sequestered into the vacuoles where it is less toxic to cellular processes 

occuring in the cytoplasm. The competition of Na with K can be reduced by mainitaining an 

excessive amount of K relative to Na. Thus, in many cereal species, Na/K ratio is an important 

indicator of salinity tolerance. In this study, we primarily focused on phentypes recorded from 

plants during the ionic phase of salinity stress, and used Na+/K+ ratio in rice shoots as an 

indicator of salinity tolerance.  

    Salt tolerance is a complex quantitative trait, which involves numerous changes in 

metabolic pathways and related physiological processes. Since many genes are involved with 

the regulation of salinity tolerance, traditional approaches that examine one or a few genes in 

response to salinity may fail to capture and characterize the complex responses at the 

molecular level. Thus, for such quantitative traits, identifying functional gene clusters would be 

much more meaningful than searching for single gene. With the advent of next generation 

sequencing technology transcriptional responses to environmental stimuli can be examined at 

a genome-wide level, and can provide a comprehensive understanding of the complex 

processes underlying environmental adaptation and abiotic stress responses. RNA 
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sequencing data provides valuable information of gene expression across different experiment 

conditions, time points, tissues or genotypes. Traditionally, in co-expression network analysis, 

genes with similar expression pattern are grouped together, with the underlying rationale being 

“guilt by association”. This extensively validated principle states that transcriptionally 

coordinated genes are often functionally related. Here, the measurement of similarity in 

expression pattern usually depends on a correlation matrix, constructed by pairwise 

correlations among all genes.  

Once co-expression modules are identified, the next goal is to determine which modules 

are related with the phenotypic response. In addition to examining th biological relationship 

among genes, other approaches calculate the correlation for physiological traits against 

eigengenes which are defined as the first principal component (first PC) of a specific module. 

The first PC accounts for the largest variance of the gene expression for the genes within the 

module and thus can describe the major expression pattern. This method is reasonable when 

the major variation in the data is caused by a treatment or condition. However, for both RNA-

sequencing data and microarray data, numerous other factors may introduce variance that 

plays a key role in clustering process. Thus, the expression patterns associated with the trait 

may be associated with other PCs that account for less variation that the first PC. The 

traditional correlation approach described above may fail to identify modules were smaller PCs 

are associated with the trait. Another disadvantage of the correlation method is that it only 

provides a measure of the strength of association between modules and physiological data. 

To select modules that can predict the observed trait, it is more reasonable to apply 

multivariate regression analysis. In this article, we provide an alternate approach to the 

conventional eigengene-correlation methods. Here, we use the variable selection method 

least absolute shrinkage and selection operator (LASSO) to bridge the gene expression data 

with an important physiological trait.   

  
Results   
Gene co-expression network in response to salinity stress 

In a co-expression network, genes are referred as nodes and an edge between two nodes 

indicates the corresponding two genes have similar expression patterns. The co-expressions 

pattern could reflect technical artifacts, inherent differences among samples or experimental 

stimulus. For this study, the primary aim was to identify genes or gene clusters whose 

expression patterns were highly associated with physiological responses to salinity stress.  All 

those genes were distributed into 17 modules, with the size ranging from 34 to 2963 genes. 

Especially, the grey module contains genes that failed to be clustered into any large modules. 
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Module features selected by Lasso 
Once co-expression modules are identified, we next sought to identify modules that are 

related to salinity stress. Traditionally, principle component analysis (PCA) would be 

performed on gene expression matrix (RNA-sequencing counts) of each module to get the 

first PC of each module (also called eigengenes), and the importance of each module was 

evaluated by the strength of correlation between eigengenes and the physiological trait. Here, 

we present a new method to select modules associated with the trait of interest (i.e. shoot Na+ 

content). There are two differences between our method and the build-in method in WGCNA. 

First, PCA analysis was performed on the LogFold Matrix of each module and extracted the 

first three PCs of each module to form a PC matrix (51 PCs from 17 modules). Three PCs 

were taken from each module since one PC is not sufficient to describe the data and more 

than three PCs are usually difficult in explanation of biological meanings. Second, a 

regularized regression model was applied to quantify the relationship between module 

expression patterns, here represented by a PC matrix, and the physiological data. The fitted 

model enables us to find the expression patterns contributing the most to the observed 

physiological data. Using the described method, we found 8 PCs from 7 modules that were 

estimated to have non-zero effects. Interestingly, for most modules, the selected PCs by 

LASSO are the second (module 4, 6, 7, 14, 15, and 16) or the third PC (module 15, 16), which 

would be ignored by traditional method using only first PC. 

 

Table 1. Overview of all modules 
Module-PC Function Adj. Pvalue 

4-3 Transport (20/67) 1.9 x 10-5 

6-3 Response to stress (16/53) 1.58x10-5 

10-3 Response to stress 0.0086 

11-1 Response to stress 7.86x10-9 

15-1 Transport 0.00067 

16-2 Cellular homeostasis (3/7) 4.46x10-12 

   

To get an overview of the clustering pattern and figure out the driven factors, principle 

component analysis (PCA) was performed on all 66 modules. Except for the grey module, the 

first PC of each module accounts for 35%~62% of the total variation in gene expression; the 

first three PCs could explain 42%~70% of the module variance.   Although the first principle 

component (PC) describes the major source of variability, the variance contributed by the 

second and the third PCs could not be ignored.  Based on the bioplot, genotypes of rice for 
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16 modules could be clearly divided into two groups, with one group dominated by Japonica 

and another group consisted of Indica. Here are some cases from those 16 modules. 

 

Module 16 PC2:  
LOC_Os12g01530 and LOC_Os11g01530 are function unknown genes in rice, but their 

homologs in other plants have functions to store ferrous iron in the chloroplast in a non-toxic 

form and to protect plants from oxidative damage induced by a wide range of stresses, 

including salt stress [2].  LOC_Os09g23300 is vacuolar iron transporter, and response to salt 

stress.  In plants, iron deficiency was observed in Na+ accumulation. (Saleh 2010) Deák et al. 

Nat Biotechnol. (1999). Zhang et al. Acta Physiologiae Plantarum. (2014). It has been reported 

that iron storage genes, LOC_Os12g01530 and LOC_Os11g01530 and  one putative vacuolar 

iron transporter, LOC_Os09g23300 are upregulated in shoot tissue caused by phosphate 

derivation [3].   

 

Module 7 the third PC:   
In this module, gene LOC_Os07g19030 is a tic22-like family domain containing protein. Tic22, 

(translocon at the inner envelope membrane of chloroplasts, 22kD), majorly involved in protein 

precursor import into chloroplasts  [4] can be induced and accumulated in salt-acclimated cells 

(long-term response, growth for 5 days at 684 mMNaCl) of Synechocystis sp. strain PCC 6803 

[5].  LOC_Os10g30540 is a putative lectin-like receptor kinase (LecRLK) which is well known 

for its role in plant stress and developmental pathways. LecRLK in pea plant has a unique 

response to Na+ and the transcript of the LecRLK accumulates in roots and shoots. The 

purified 47 kDa recombinant PsLecRLK-KD (kinase domain) protein has been shown to 

phosphorylate general substrates like MBP and casein [6]. The lectin receptor-like kinases 

(LecRLKs) has been originally described from Arabidopsis, which have structure similar to 

other plant RLKs. In one study the induction of AtLecRK2 in response to salt was shown to be 

regulated by ethylene signaling pathway [7].  LOC_Os07g14100, Polygalacturonase (PG), 

one of the hydrolases responsible for cell wall pectin degradation, is involved in organ 

consenescence and biotic stress in plants. Transcription of OsBURP16 is induced by cold, 

salinity and drought stresses, as well as by abscisic acid (ABA) treatment. Overexpression of 

OsBURP16 enhanced sensitivity to cold, salinity and drought stresses compared with controls 

[8].  Reduced violaxanthin de-epoxidase, LOC_Os04g31040, is instrumental in the regulation 

of  xanthophyll cycle which can reduce ROS damage to cell structure [9, 10].  

  

Discussion 
Genes highly correlated with selected features 
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Since selected features are summarization of gene expression pattern within that module, 

we further examined which genes contribute the most to the selected features. For most 

selected features, genes could be obviously divided into two subgroups that genes in one 

group are highly correlated with the selected feature while genes in another group contribute 

less to the observed feature. This allows us to implement a broken stick criterion to select 

genes that contribute more than random case. For features that no subgroup observed, all 

genes within that module were used for the following analysis.  

The LASSO approach described above facilitated the identification of modules, and their 

corresponding PCs that were most closely related to the phenotypic data. Since the PCs for 

each module describe the major gene expression patterns of the module, the next step would 

be to determine which genes contribute most to each PC. To screen for the genes that 

contribute to shoot Na+:K+, the association between selected PCs and genes in the same 

module were assessed using Pearson’s correlation and the distribution of the correlation 

coefficients were plotted. [FIGURE] For most selected features, two clear clusters of genes 

could be observed: those that display high correlation with the selected PC, and those that 

show a minor contribution to the selected PC. This is consistent with our hypothesis that only 

small subsets of genes, especially in large modules, contribute to the observed phenotype.  

The contribution of each gene to the PC can be assessed using the square of PC 

loadings, however to select genes that have a statistically significant contribution to the PC we 

implemented the broken stick model. The objective of the broken stick model is to select a 

subset of genes within the model that most accurately represent the selected PC.   

This allows us to implement broken stick model to statistically select genes that related 

with the PC more than a random case. In stick-breaking theory, a stick of length one would be 

literately broken into pieces and the length of broken pieces just follow Dirichlet distribution. 

Here, we take the contribution values of genes from the same module as the lengths of pieces 

from a broken stick. The random sampling from Dirichlet distribution was repeated for many 

times, and for each time, the broken pieces were sorted by their lengths in a descending order. 

The gene with the largest contribution would be compared with the upper quantile of the 

empirical distribution constructed by the largest lengths of broken pieces. If the contribution 

value is larger than the upper quantile from the random background, this gene would be 

regarded as genes that have unusual contribution to the selected PC.  

 

Method and Materials  
Plant growth conditions and phenotyping 

All phenotypic data was collected from large-scale phenotyping of a diverse panel of rice 

varieties. The greenhouse conditions and experimental description for these experiments is 
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described in Campbell et al 2017. Briefly, the study used 383 of the 421 original RDP1 

accessions and seven check varieties (Zhao et al., 2011; Famoso et al., 2011; Eizenga et al., 

2014). According to the classification by Famoso et al, the subset of RDP1 included 77 indica, 

52 aus, 92 temperate japonica, 85 tropical japonica, 12 groupV/aromatic, and 56 highly 

admixed accessions (the subpopulation assignment was not provided for nine accessions) 

(Famoso et al., 2011). The phenotyping experiments were conducted between July to Sep 

2013 in a controlled green house at Lincoln, NE. The greenhouse was maintained at 25-28 °C 

with relative humidity at 50-80%, and a photoperiod of 16h:8h day:night. Seedlings were 

germinated in the dark to two days, exposed to light for 12h, and were transplanted into pots 

filled with Turface (Profile Products, LLC). The seedlings were grown in tap water for four days 

after transplanting and were supplemented with half strength Yoshida solution (pH 5.8) for the 

remainder of the experiment (Yoshida et al., 1976). For salt treatment, NaCl was mixed with 

CaCl2 in a 6:1 molar ratio and was added after 10 d of seedling growth. The stress treatment 

was started at 2.5 dS·m-1 and was increased gradually up to 9.5 dS·m-1 in 4 steps over a 

period of four days. The stress treatment was maintained at 9.5 dS·m-1 for the remaining two 

weeks. Root and shoot samples were collected separately and rinsed 3 times in tap water and 

once in deionized water to remove excess NaCl at the completion of the experiment (14 days 

of 9.5 dS·m-1; 28 days after transplant). The samples were oven dried at 60 °C for one week 

prior to measuring root and shoot biomass. Shoot and roots from two plants were taken for 

biomass measurement. Dried shoot samples were ground and 200 – 300 g of total material 

was digested with 0.1N Nitric acid (Fisher Scientific) at 70 °C for 8 hrs, while root samples 

were weighed and digested without any grinding. The samples were diluted and cation (Na+ 

and K+) concentrations were determined with appropriate standard by dual flame photometry 

(Cole Parmer, USA). Phenotypic data was combined across periods and a linear model was 

fit to calculate adjusted means for individual accession using the PROC GLM procedure of the 

Statistical Analysis System (SAS Institute, Inc.). The linear model included period (i.e., June-

July or Aug-Sept), replication nested within period, tub nested within replication, accession, 

and accession-by-period interaction.  
 

Transcriptome experiment and RNA-sequencing 

RNA-seq data was generated from shoot tissues of 92 diverse rice accessions. These 

accessions were randomly selected from the Rice Diversity Panel 1 (Zhao et al 2011) and 

consists of 34 subspecies Indica while 52 accessions were from subspecies Japonica. For 

each accession, gene expression profiles of shoot tissues were measured for both control 

condition and salt condition after exposing the rice seedlings to 6 dS·m-1 (~60 mM NaCl) salt 

stress for 24h. After mapping sequences of each library to the Oryza sativa japonica reference 

genome, read counts were quantified for 57840 genes across all rice accessions. 
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RNA-seq data analysis and Co-expression network analysis 

By using Trimmomatic [11], each 101bp RNA-seq read was trimmed to make sure the 

average quality score larger than 25 and having the minimum length of 75bp. All trimmed short 

reads were mapped to the rice Genome (version 6) using TopHat [12], allowing up to two base 

mismatches per read. Reads mapped to multiple locations were discarded. Numbers of reads 

in genes were counted by the HTSeq-count tool using corresponding rice gene annotations 

[13]. DEseq [14] was used to do normalization for read counts of all genes.    

Co-expression network analysis was used to identify genes with coordinated 

transcriptional responses (modules). Genes exhibiting low variance or low expression across 

both control and salt samples were removed, as these genes could introduce noise with the 

co-expression pattern measured with Pearson correlation. Two criterions were used for this 

purpose: (1) the ratio of upper quantile to lower quantile of normalized read count smaller than 

1.5; (2) for more than 80% samples, normalized read count smaller than 10. To capture the 

signal of changes caused by salinity stress, a log2 fold change matrix was calculated by 

dividing the salt count with corresponding control count and further stabilized through log 

transformation. For this log2 fold change matrix used for co-expression network construction, 

genes with ratio of upper quantile to lower quantile larger than 0.25 were kept. Among the total 

of 57840 rice genes, 8953 genes displaying sufficiently high variation were identified, and their 

values were used to construct a correlation matrix using the R package, WGCNA [15]. Soft 

threshold was set as 4 to ensure the scale free topology to be higher than 0.9. Due to the 

complexity of the hierarchical clustering tree, method dynamic hybrid cut was implemented to 

get modules. Dynamic tree cutting was adopted to identify modules with minModuleSize of 25 

[16]. Eigengenes were used to cluster all identified modules using Average Hierarchical 

Clustering analyses [16]. Pairwise distances between modules were calculated from the 

correlation between eigengenes for each module as an estimate of similarity.   

 

 
Figure 1. Workflow of our algorithm 
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Algorithm for linking phenotyping data to submodules in gene co-expression network 
Figure 1 shows the workflow of the algorithm to link phenotyping data to submodules in 

gene co-expression network. For all modules identified by WGCNA, the first step is breaking 

down all modules into submodules. Principle Component Analysis (PCA) was used to all 

modules. The first, second, and third components were considered, and the eigenvectors of 

first three Principle Components were used as the virtual genes to represent genes in these 

components. Then, LASSO method was employed to select the most significant virtual genes 

associated with phenotyping data. The following section describes the details of the LASSO 

step. Once significant virtual genes identified, all genes in the same module were compared 

with a give significant virtual genes to identify the most correlated genes with a statistical based 

on the broken-stick model. The details of this test are described in the following sections. 

 

Variable selection with LASSO 

To link the phenotypic data to gene expression profiles, a linear model was fitted.  

𝑌" = 𝑋𝛽& + 𝛽(& + 𝑒 

where yi are ion condense for ith(i=1...92) genotype, Xi(jk) is the PC matrix that Xi(jk) represents 

the log2 PC value from the jth(j=1...3) PC of the kth(k=0...16) module for the ith genotype, and 

 is the coefficient of jth PC from kth module and its absolute value quantifies the contribution 

effects. The physiological vector was Na+/K+ ratio, and we took log2 of Na+/K+ ratio.  The 

LASSO method was used to shrink coefficients of virtual genes with trivial effects into zeroes 

while keeping virtual genes with large effects by minimizing the residual sum of squares with 

additional L1 norm.  

min∑(𝑌& − 𝛽(& − 𝑋𝛽&)1 + 𝜆 3(1 − 𝛼) 6|𝛽&||11 + 𝛼6 |𝛽&||819                              (1) 

The optimal penalty parameter  is a constant larger than zero and the optimum value was 

determined with leave-one-out cross validation.  To determine the optimal set of parameters 

selected by LASSO, we adapted the most regularized model such that error is within one 

standard error of the minimum. 

 

Identification of significant genes with Broken-stick model 
For a module with K genes, a stick with length one needs to be broken into N pieces. The 

lengths of those K pieces were got from the following Dirichlet distribution. Denote the length 

of ith (0<i<K) piece as xi (0<xi<1) and  ∑ 𝑥&;
&<8 = 1. In addition, for each xi, we have the 

corresponding ai (ai>0). Then X = [X1, X2,…,Xk] have the following pmf.   

yN×1 = XN×MβM×1 + eN×1

β jk

λ
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                                         f(X, a) = =(∑ >?@
?AB )

∏ =(>?)D
?AB

∏ (𝑥&)>?E8F
&<8  

 

In our case, to make sure X follow uniform distribution in K dimension, ai (0<i<K) was set as 

one. 

The sampling process was repeated for 10000 times and for each time, the resulting 

lengths were further sorted in the descending order x(1)<x(2)< …<p(m)<…<x(k). Values of x(m) 

from 10000 simulations would be used to construct the corresponding empirical distribution 

E(m). Meanwhile, the proportions of contribution (denoted as p(m)) of genes in the module were 

sorted in the descending order p(1)<p(2)< …p(m)<…<p(k). P(m) was then compared with upper 

quantile of E(m). 

 

Real data driven simulation 
Two different simulations were conducted to compare LASSO and correlation in selecting 

expression patterns. 

 

Simulation I 
A real data driven simulation was performed to evaluate, compared with simple 

correlation, whether or not LASSO did a better job in picking up correct expression 

patterns(PCs). In the real data analysis, eight useful PCs were selected out and the 

corresponding coefficients, defined as effect sizes, were further estimated with the simple 

linear model. In this simulation, the comparison between methods correlation and LASSO was 

performed under different strengths of effect size, adjusted by timing the original coefficients 

with a series of multiples (0.3, 0.5, 0.8, 1, 1.5, 2). The formula used in the simulation is as 

following. 

 

𝑌"×8H&I = 𝑋"×J𝛽J×8H&I + 𝜀"×8H&I  

 

𝑋"×J is the same PC matrix as what we used in real data analysis.  𝛽J×8H&I  is the according 

tested effect size for all PCs. 𝜀"×8H&I  is a random error assumed to follow normal distribution 

N(0, 𝜎1) and the variance was estimated from the fitted linear model with eight PCs. With 

equation above, for each multiple, we generated  𝑌"×8H&I	100 times and use the simulated 

phenotypes and PC matrix 𝑋"×J	 to fit LASSO or calculate correlation. The comparison 

criterion was based on AUC values from precision-recall curves. For correlation method, the 

rankings of those 51 PCs were based on absolute values of correlation between PCs and the 

simulated phenotype. For LASSO method, the rankings were got from Coefficient Shrinkage 
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curve, in which coefficients of PCs would shrink to zeroes in order. Since some PCs would 

shrink to zero almost the same time, they were further ranked by the absolute values of 

coefficients at the optimum lambda.    

 

Simulation II 
In the first part of the simulation, the comparison was done under various multiples of 

original coefficients. Also, PCs set to have non-zero effect size were the same as what we 

picked from real data analysis. To generalize our conclusion about the comparison, we 

randomly choose eight PCs and set their coefficients as non-zero values since from real data 

we got eight PCs selected out. Another difference from simulation in part I is that the absolute 

value of those eight coefficients were set the same instead of using their original values, four 

of them were set as positive while the other four were set as negative. The maximum 

coefficient size from the real data analysis is 0.1596 and the minimum size is 0.034. Based on 

the scale of original coefficients, coefficient series in our simulation is 0.03, 0.05, 0.1, 0.15, 0.3 

and  0.5.  For each effect size, we did 100 simulations. 

 

GO term enrichment analysis  
GO::TermFinder [17] were used to identify the significantly enriched GO terms. The P 

value was calculated with hypergeometric distribution and further adjusted with bonferroni to 

correct multiple hypothesis testing. The cutoff used is adjusted P value < 0.05. The GO term 

association files for rice were obtained from http://rice.plantbiology.msu.edu/. 
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