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Abstract 14 

Due to advancements in sensor-based, non-destructive phenotyping platforms, researchers are 15 

increasingly collecting data with higher temporal resolution. These phenotypes collected over 16 

several time points are cataloged as longitudinal traits and used for genome-wide association 17 

studies (GWAS). Longitudinal GWAS typically yield a large number of output files, posing a 18 

significant challenge for data interpretation and visualization. Efficient, dynamic, and integrative 19 

data visualization tools are essential for the interpretation of longitudinal GWAS results for 20 

biologists but are not widely available to the community. We have developed a flexible and user-21 

friendly Shiny-based online application, ShinyAIM, to dynamically view and interpret temporal 22 

GWAS results. The main features of the application include (i) interactive Manhattan plots for 23 

single time points, (ii) grid plot to view Manhattan plots for all time points simultaneously, (iii) 24 

dynamic scatter plots for p-value-filtered selected markers to investigate co-localized genomic 25 

regions across time points, (iv) and interactive phenotypic data visualization to capture variation 26 

and trends in phenotypes. The application is written entirely in the R language and can be used 27 

with limited programming experience. ShinyAIM is deployed online as a Shiny web server 28 

application at https://chikudaisei.shinyapps.io/shinyaim/, enabling easy access for users without 29 

installation. 30 
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Introduction 34 

Owing to the availability of high-throughput phenotyping platforms, there is growing interest in 35 

the quantitative genetics of longitudinally measured traits, i.e., traits that are measured over 36 

multiple time points by advanced imaging systems (Araus and Kefauver 2018; Araus et al. 37 

2018). For example, the application of GWAS to responses to abiotic stresses, such as drought, 38 

salinity, and temperature tolerance, measured at temporal resolution may provide insights into 39 

the mechanisms underlying plant physiological processes measured throughout the duration of 40 

stress or development (Busemeyer et al., 2013; Moore et al., 2013; Topp et al., 2013; Slovak et 41 

al., 2014; Wu�rschum et al., 2014; Yang et al., 2014; Bac-Molenaar et al., 2015; Campbell et al 42 

2015; Campbell, Walia, and Morota 2018). 43 

Data visualization is a fundamental aspect of big data analysis in genetics. Manhattan plots are 44 

standard tools used to visualize GWAS results and to identify the genomic regions associated 45 

with a given phenotype. However, the static nature of these plots limits the information that can 46 

be displayed and extracted. Further, the number of Manhattan plots that can be viewed at once 47 

time is limited, making comparisons across phenotypes tedious. The situation becomes more 48 

challenging in the case of longitudinal GWAS, which are performed across multiple time points, 49 

with each time point treated as an independent phenotype. Furthermore, it is difficult to share 50 

GWAS outputs in an easy and convenient way, requiring novel applications for dynamic data 51 

visualization and sharing. Many browsers have been built to visualize GWAS outputs (e.g., 52 

Khramtsova and Stranger 2017; Cuellar-Partida, Renteria, and MacGregor 2015; Juliusdottir et 53 

al. 2018; Ziegler, Hartsock, and Baxter 2015). However, none of these are specifically tailored to 54 

longitudinal traits. Further, none of the applications offer features for the dynamic visualization 55 

of Manhattan plots online and for comparisons across timepoints simultaneously.  56 

To this end, we developed a Shiny-based application, ShinyAIM, for visualizing and interpreting 57 

longitudinal GWAS data in an interactive way. The application is distinct from previously 58 

developed GWAS browsers because it is specifically designed for longitudinal traits, allowing 59 

the simultaneous visualization of all time points or phenotypes and comparisons of top 60 

associated markers across time points. The interactive and integrative data visualization features 61 
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embedded in the application offer a new resource for users to readily extract extensive 62 

information from temporal GWAS results.  63 

Overview of ShinyAIM 64 

Implementation 65 

ShinyAIM is entirely written in the R language (R Core Team 2018) with the underlying R code 66 

encapsulated by the shiny R package (Chang et al. 2018), which is a web application framework 67 

for R offering an interactive graphical user interface. Shiny has been making inroads into plant 68 

breeding and quantitative genetics for research and teaching purposes, such as Be-Breeder 69 

(Fritsche-Neto and Matias, 2016) and ShinyGPAS (Morota 2017). ShinyAIM leverages the 70 

cumulative utility of the R packages manhattanly (Sahir 2016) and plotly (Sievert et al. 2017) to 71 

create a cohesive web browser-based application. The ShinyAIM application does not require 72 

any working knowledge of R and is intuitively operated by mouse clicks. ShinyAIM is hosted by 73 

a Shiny web server (https://chikudaisei.shinyapps.io/shinyaim/) for online use or can be run 74 

locally within RStudio by downloading the source code from the GitHub repository 75 

(https://github.com/whussain2/ShinyAIM). The ShinyAIM application is open source and is 76 

distributed under Artistic License 2.0. The user guidelines, such as input data formats and data 77 

upload instructions, are provided in the main tab labeled ‘Information.’ Links to sample files and 78 

a video demonstration are also available in the Information tab.  79 

Main features and functionality 80 

The application has four main features to explore GWAS results: (i) interactive Manhattan plots 81 

for single time points, (ii) Manhattan grid plot to compare results across all time points 82 

simultaneously, (iii) dynamic views of p-value-filtered top associated markers in a scatter plot to 83 

identify co-localized markers over time, and (iv) visualization of phenotypic data used for 84 

GWAS (Figure 1). These features are supported by user-defined data filtering criteria in 85 

ShinyAIM to smoothly navigate the application. Each feature is briefly described in the 86 

following sections. 87 

Interactive Manhattan Plots 88 
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In the Interactive Manhattan Plots panel, users can interactively view the Manhattan plot for each 89 

time point (Figure 1A). After the correct file format is selected and the file is uploaded, the 90 

available time points will be automatically updated in the ‘Choose Time Point or Phenotypes.' 91 

An interactive Manhattan plot is automatically generated on the right hand panel after selecting a 92 

target time point. Users can move the mouse over the points in the plot to display detailed 93 

information, including the marker name, position, chromosome location, and -log10 p-value. 94 

Furthermore, it is possible to zoom in on potential candidate regions to obtain additional detail. 95 

ShinyAIM offers the flexibility to choose the significance level by moving the slider input bar. In 96 

addition, users have a choice to display a list of markers arranged in decreasing order of p-values 97 

in the table below the Manhattan plot panel. The display also includes marker information in the 98 

input data file. The slider input bar controls the number of markers shown in the table. 99 

Manhattan Grid Plot 100 

Manhattan Grid Plot tab allows users to visualize the Manhattan plots combined for all time 101 

points and can be used to explore how GWAS peaks change over time to facilitate data 102 

interpretation (Figure 1B). The significance threshold for markers can be modified by moving 103 

the slider input bar. Moreover, ShinyAIM enables users to choose the number of columns and 104 

rows in the grid plot by moving the slider input bar ‘Select the Number of Columns in Grid Plot.’ 105 

Comparison of Associated Markers 106 

Users are able to dynamically view only the top associated markers in a scatter plot (Figure 1C). 107 

This feature is implemented in ShinyAIM to enable users to focus only the topmost associated 108 

markers and compare these markers across time points to identify co-localized regions. Users can 109 

select the number of markers displayed in a scatter plot by filtering the markers based on p-110 

values. This is achieved by directly typing or selecting the option ‘Select Top Markers Based on 111 

p-value.' The scatter plot is interactive and users can move the mouse over a point to display 112 

information, including the time point, chromosome name, position of the marker, name of the 113 

marker, and -log10 p-value (Figure 1C).  114 

Phenotypic Data Visualization 115 
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Phenotypic data visualization helps users view phenotypes used for GWAS in the forms of 116 

dynamic histograms and density plots (Figure 1D). The trends and variability in phenotypic 117 

values at each time point can be visualized using box plots. All plot types are interactive and 118 

users can move the mouse over a particular point to obtain detailed information. 119 

Conclusion 120 

We have developed a user-friendly integrative Shiny-based application to dynamically visualize 121 

and interpret longitudinal GWAS results, providing an easy-to-use online tool to the community.  122 

Availability 123 

The source code for the ShinyAIM application is freely available at 124 

https://github.com/whussain2/ShinyAIM licensed under Artistic License 2.0. ShinyAIM can be 125 

launched on any system that has RStudio installed or available online at the Shiny web server 126 

https://chikudaisei.shinyapps.io/shinyaim/.  127 
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Figures 129 

 130 

Figure 1: Main interface of the ShinyAIM application. Screenshots of panels for the main tabs 131 

are shown. (A) The Interactive Manhattan Plots tab allows users to display interactive Manhattan 132 

plots for a selected time point. Users have the flexibility to choose the significance level and can 133 

display the top associated markers in tabular format. (B) The Manhattan Grid Plot tab allows 134 

users to visualize Manhattan plots for all time points simultaneously. Users have the flexibility to 135 

choose the significance level and the number of columns in the grid plot. (C) The Comparison of 136 

Associated Markers tab allows users to filter markers based on p-values, display a scatter plot for 137 

comparisons across all time points, and search for co-localized markers. (D) The Phenotypic 138 

Data Visualization tab generates histogram and density plots and summarizes trends in temporal 139 

phenotypic data in the form of box plots.  140 

 141 
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