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ABSTRACT

High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. 
Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on 
desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flex-
ible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput 
plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and pro-
vides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH 
with the Open Science Grid provides academic researchers with the computational resources required for processing 
large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to inter-
pret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza 
sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that 
are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 
4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image 
Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for 
plant biologists to analyzephenomics datasets.

Keywords:   High throughput computing, image analysis, image processing, large-scale biology, OpenCV, Open Science Grid, 
open-source software, phenomics.

Introduction

With the advent of next-generation sequencing technolo-
gies and development of high-density genotyping platforms 
for many crop species, the volume of genotypic data being 
generated has increased exponentially. However, the collec-
tion of corresponding phenotypic data has lagged behind 
and remains a laborious task, often involving destructive 

measurements. Large-scale phenotypic (phenomics) data 
for traits of interest are essential to realize the full potential 
of the enormous progress in crop genomics. The generation 
of phenomics data for plants is challenging because many 
of the commercially valuable traits are quantitative, exhibit 
high variability across diverse environments, and change 
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throughout the plant’s life cycle, thus adding to cost and 
labor. Further, many phenotypic traits are not amenable for 
visual scoring and observations on a large scale. These chal-
lenges have led to a translational bottleneck, often referred to 
as the genotype–phenotype gap. This challenge is discussed 
in several recent reviews (Furbank and Tester, 2011; Sozzani 
and Benfey, 2011; Gjuvsland et al., 2013; Yang et al., 2013; 
Brown et al., 2014; Fraas and Luthen, 2015).

To bridge this gap, several efforts in the public sector and 
industry have started to materialize through the establishment 
of research centers focusing on the development and applica-
tions of high-throughput phenomics technologies (Yang et al., 
2013). Image-based plant phenomics is one area becoming 
increasingly accessible in the public domain [e.g. Australian 
Plant Phenomics Facility; European Plant Phenotyping 
Network; PHENOME: The French Plant Phenomics Network 
(FPPN); High-Throughput Rice Phenotyping Facility (HRPF; 
Huazhong University, China); Donald Danforth Plant 
Science Center; University of Nebraska-Lincoln Innovation 
Campus; LeasyScan at ICRISAT]. These high-throughput 
imaging platforms allow for non-destructive measurements to 
be recorded accurately and frequently during the course of an 
experiment. Such systems utilize a series of cameras to esti-
mate plant growth, temperature, water content, or chlorophyll 
characteristics on a large scale, and provide researchers with 
valuable insights into dynamic physiological changes occur-
ring during the course of plant development or in response to 
environmental changes. These platforms are often fully auto-
mated and therefore have lower technical errors compared to 
traditional phenotyping methods. Overall, the optics-based 
systems greatly enhance the ability to capture quantitative 
traits on a temporal and spatial scale, and through the integra-
tion of mechanical automation, make high-throughput plant 
phenotyping accessible to public researchers.

The generation of large-volume image data currently is, and 
will, remain a constant for most plant phenomics experiments. 
There are two main considerations for analysis of image-based 
data. The first is access to image analysis tools to extract bio-
logically meaningful digital traits. The second consideration is 
image storage, standardized cataloging protocols, and accessi-
bility through public repositories so is that the data are widely 
available for the plant research community. Publically acces-
sible tools for image analysis and image storage (e.g. Bisque/
iPlant) have emerged in recent years, although this field still 
remains in its infancy (Kvilekval et al., 2009; Yazdanbakhsh 
and Fisahn, 2009; Galkovskyi et  al., 2012; Tanabata et  al., 
2012; Pound et al., 2013; Brown et al., 2014; Klukas et al., 2014; 
Whan et al., 2014; Fahlgren et al., 2015; Müller-Linow et al., 
2015). However, this challenge is largely tractable because many 
of the image analysis resources that are publically available in 
the field of computer vision can be adapted for plant phenom-
ics data. One such resource is OpenCV, which is a library of 
programming functions for processing many types of images 
(Bradski, 2000). However, adapting and utilizing these func-
tionalities for plant phenomics requires computational and 
programming expertise, thus limiting wider utilization by the 
plant science community. This hurdle has been addressed with 
several timely resources, such as PlantCV, IAP, and others 

(Yazdanbakhsh and Fisahn, 2009; Galkovskyi et  al., 2012; 
Tanabata et al., 2012; Pound et al., 2013; Brown et al., 2014; 
Klukas et al., 2014; Whan et al., 2014; Fahlgren et al., 2015; 
Müller-Linow et al., 2015).

Klukas et al. (2014) and Fahlgren et al. (2015) have both 
developed software for extracting biological information 
from images captured with LemnaTec platforms (http://www.
lemnatec.com). Despite the power and flexibility provided by 
these programs, the loading and collection of experimental 
metadata from large datasets is done manually or through 
individual scripts developed by various research groups, 
making these tasks time-consuming and laborious. To put 
this in context, the number of files generated for a triplicated 
medium-scale experiment with 3 weeks of multi-camera 
imaging and ~300 genotypes can easily exceed three million. 
This can make even simple file management tasks computa-
tionally challenging for plant biologists. Moreover, the execu-
tion of image processing tasks is computationally intensive 
and requires access to high-throughput computational grids, 
and a proficiency in one or more programming languages. 
Many of the available plant image analysis software cannot 
easily be adapted by plant biologists for implementing pro-
cessing workflows on computational grids, and require exten-
sive modifications to fully realize the potential of distributing 
intensive computational tasks across an array of processors.

To address some of these challenges, we have developed 
Image Harvest (IH) as an open-source and flexible framework 
for making high-throughput image analysis accessible for plant 
biologists. Image Harvest (IH) is an open-source Python library 
for processing and analyzingplant images. In addition to pro-
viding powerful functions for processing several types of images 
(e.g. conventional color and fluorescence images), IH contains 
functions that greatly simplify the collection of metadata from 
the organizational structure of raw image databases. IH pro-
vides an option for implementing basic statistical functions and 
provides several definitions of digital traits to describe plant 
growth, morphology, and physiological responses. Moreover, 
IH has been integrated with the Open Science Grid (http://
www.opensciencegrid.org/), which provides grid comput-
ing resources to academic users at no cost, thus reducing the 
overhead costs associated with the running and analyzing phe-
nomics experiments. Here, we detail the image analysis func-
tionalities of Image Harvest and demonstrate the value of some 
of the plant architecture-related digital traits by mapping them 
to the rice genome. The specific aims of this manuscript are: (1) 
to describe the creation and execution of processing workflows 
on a local machine and on the high-throughput computational 
cluster; (2) to demonstrate the processing power and accuracy 
of IH; (3) and to present some of the downstream applications 
of image-derived digital traits from two crop species.

Materials and Methods

Rice imaging at the late tillering stage
Plant materials  This study included 376 of the 421 original RDP1 
rice (Oryza sativa) accessions (Famoso et al., 2011; Zhao et al., 2011; 
Eizenga et  al., 2014). Forty-five accessions were not included due 
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to lack of seed availability or poor seed quality. Accessions were 
obtained from the USDA-ARS Dale Bumpers Rice Research Center 
and purified through single seed descent prior to phenotyping.

Plant Growth Conditions  Seeds from 373 genotypes from the rice 
diversity panel were surface-sterilized with fungicide (Thiram®) and 
germinated on moist paper towels in plastic boxes for 3 d (Famoso 
et al., 2011; Zhao et al., 2011). Three uniformly germinated seeds of 
each genotype were transplanted to pots (150 mm diameter × 200 mm 
height) filled with 2.6 kg of UC Mix (Dimond, 1958).(Dimond, 1958). 
Square containers were placed underneath the pots to provide ade-
quate water to saturate the soil. Plants were thinned to one seedling 
per pot six days after transplanting (DAT). For the first 20 DAT each 
pot was watered daily with ~150 ml from the top of the pot. Over the 
course of the two experiments, the greenhouse temperatures during 
the day averaged 28.8 °C (±2.02 °C, SD) and 26.0 °C (±1.01 °C, SD) 
at night. Relative humidity was maintained at 63.4% (±9.04%, SD) 
during the day and 69.7% (±1.73%, SD) at night (Rotation Atomiser 
Defensor ABS3, Condair Ltd., Pfäffikon, Schwyz, Switzerland). At 
21 DAT, each pot was watered to a uniform weight so that approxi-
mately 600 ml of water was maintained in the soil. The experimental 
design was identical to that described by Campbell et al. (2015). Each 
pot was imaged daily using the LemnaTec Scanalyzer 3D system at 
the Plant Accelerator facility in Adelaide Australia for 18 days using 
two 5-megapixel RGB/VIS cameras (Basler Pilot piA2400-12gc) from 
three perspectives consisting of two side-view angles separated by 90° 
and a single top view. The entire data set of can be accessed through 
the iPlant Collaborative upon publication. (http://mirrors.iplantcol-
laborative.org/browse/iplant/home/shared/walia_ rice_salt)

Phenotypic data analysis  Data were combined across experiments, 
and a linear model was fitted to calculate the adjusted means for each 
individual accession using the ‘lsmeans’ function in the LSMeans 
package in R (R Core Team, 2014; https://cran.r-project.org/web/
packages/lsmeans/index.html). In the linear model, experiment is con-
sidered a fixed effect and accession as a random effect. The adjusted 
means were used for hierarchical clustering of raw moments using the 
complete-linkage method with Euclidian distance as the distance met-
ric. For the comparison of 22 digital traits with three manual pheno-
typic measurements, Pearson correlation analysis was done using the 
rcorr function in the Hmisc package in R (https://cran.r-project.org/
web/packages/Hmisc/index.html; R Core Team, 2014).

Genome-wide association mapping  All accessions were genotyped 
using 44 000 SNPs (Zhao et al., 2011). A conventional mixed-model 
genome-wide association analysis was used to identify genomic regions 
associated with each of the 22 digital traits. The implemented mixed 
linear model can be summarized as: y=Xβ+Cγ+Zu+e, where β and γ 
represent coefficient vectors for SNP effects and subpopulation prin-
cipal components, respectively, which are fixed effects, u is a random 
effect that accounts for population structure and relatedness, Z rep-
resents the corresponding design matrices, and e is the random error 
term. The model was implemented using EMMA in R using a minor 
allele frequency cut-off of 0.05 (Kang et al., 2008; R Core Team, 2014).

Results

Software overview

Image Harvest (IH) is an open-source Python library for pro-
cessing and analyzing plant images. IH provides integrated 
functions for complete image analysis from processing to 
descriptive statistics. The software is written in Python and 
uses algorithms from OpenCV to extract plant objects from 
complex images. SciPy is used for basic downstream statistical 
analysis of digital traits (http://www.scipy.org/index.html).

The implementation and execution of image processing 
steps varies depending on the nature and size of the input files. 
IH is available as stand-alone software for OS X, Windows, 
and Linux, and is also compatible for high-throughput image 
processing on computing clusters. The stand-alone software 
allows users to develop processing pipelines and process a 
small number of images. Once processing pipelines have been 
defined, they can be scaled up to process thousands of images 
in a high-throughput computing environment. IH workflows 
have been integrated into the Open Science Grid (OSG), which 
is comprised of ~100 000 opportunistically available proces-
sors (Pordes et  al., 2007). The presence of these workflows 
on OSG provides the high-throughput computing resources 
necessary for processing large image sets in a matter of hours 
for the plant science community. Although several software 
tools are available to perform image analysis, the ability to 
create distributed computing workflows is one of the salient 
and unique features of IH and is currently not implemented 
in other software.

Image capture
IH is a flexible platform, capable of processing images from 
various sources, ranging from automated imaging platforms 
to conventional hand-held cameras. The input images require 
the retention of straightforward parameters to ensure optimal 
processing of images and accuracy of digital traits. Imaging 
should be done in a uniform/controlled environment. It is 
recommended that plants be imaged in an environment with 
multiple light sources to minimize shadows and provide a 
uniform background for images (see Supplementary Fig. S1 
at JXB online). The plant should be placed in front of a uni-
form background that is very different in color than that of 
the plant (for instance white, blue, or black). Based on our 
preliminary experiments, blue or white backgrounds are easi-
est to differentiate background features from plant pixels. 
These colors are also suitable for pots or frames that sup-
port the plant. If  comparing multiple images, the camera and 
plant position should be fixed, and lighting conditions should 
be consistent from image to image. Slight movement caused 
by mechanical agitation or airflow may cause blurring, which 
reduces accuracy, and therefore the user should ensure that 
movement is minimized. Lastly, the imaging environment 
should be clear of plant matter, soil, or other debris, as these 
have similar colors properties to the plant and may be classi-
fied as ‘plant pixels’ during processing.

Developing a processing workflow on a local computer

Prior to implementing a computationally intensive workflow 
on thousands of images, an appropriate workflow should be 
developed on a local computer using a few representative 
plant images. IH allows for the results of each processing step 
to be monitored in real-time. Here we provide a simple pro-
cessing pipeline for extracting plant pixels from a single color 
(RGB) image of a rice plant (cv 9311) at maturity (Fig. 1A). 
The images were captured using a conventional SLR camera 
(Canon Rebel T1i) and were imaged in a homemade imag-
ing chamber to provide adequate lighting (see Supplementary 
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Fig. S1). The raw images, as well as the full processing script 
is provided at the IH website (http://cropstressgenomics.org/
data/html/ex_script_camera2.html).

Although individual workflows are specialized, there are 
common steps and design decisions in each workflow with 
wider applicability. For all image types, processing can be sep-
arated into four distinct modules: (1) background removal; 
(2) noise reduction; (3) cropping; and (4) data gathering. 
A  list of functions available for each of the four classes of 
processing tasks is provided as Supplementary Table S1. The 
purpose of background removal is to remove a majority of 
the pixels that can clearly be defined as background, whereas 
noise reduction is fine-tuned for specific areas that may con-
tain both background and plant pixels, such as the plant 
container. Finally, cropping is used to extract only the plant 
pixels from the image and, if  performed effectively, increases 
data reliability.

Background removal
The first image processing step is a simple cropping func-
tion [crop()] to remove features outside of the background 
at the edges of the image. This step provides a more uniform 

background and allows the plant object to be extracted from 
the background using a few simple processing functions. In 
practice, the camera and plant positions will be fixed, so once 
parameters have been optimized for this function from a sin-
gle image, the same can be applied to all other images. Next, 
the colorFilter()function is used to retain pixels with color 
qualities that satisfy a logical argument. Based on our logic, 
IH retains the pixels that meet the following condition: the 
green value of the pixel must exceed the blue channel value. 
colorFilter()can also be applied to a specific area of image 
by providing an optional region of interest (ROI) in the form 
[ystart, yend, xstart, xend]. These simple functions are suf-
ficient to remove the majority of the background from the 
image.

Noise reduction and image cropping
The crop and colorFilter functions remove the majority of 
background pixels; however, other small background features 
remain in the image and must be removed through additional 
processing steps. These additional features are removed from 
the images based on their size: the contourChop() func-
tion is used to remove these small background features. The 

Fig. 1.  Simple processing workflow for side-view RGB images and digital morphological descriptors. (A) Major processing tasks used to process RGB 
side-view images of rice plants captured with a conventional SLR camera. The full processing script, which lists all processing tasks and the appropriate 
parameters is provided as Supplementary File S1.xls. The panels on the right show the results of each processing step. (B) A subset of the morphological 
digital traits currently available in IH. A complete list of the digital traits used is provided in Supplementary Table S3, and are visually depicted in 
Supplementary Fig. S3. The center of mass is indicated by the red point in the center of the plant.
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contourChop() function takes two arguments: the image to 
be processed and a minimum threshold area for contours to 
be removed.

Alternatively, IH has several morphological operations 
that can be used in place of contourChop() to remove small 
non-plant objects from the image. For example, morphologi-
cal opening erodes all borders of the objects in the image and 
subsequently adds borders back to the shapes remaining after 
the erosion step. Thus, much of the noise in the background 
of the image can be removed.

The final step of image processing is to crop the image to 
just the plant to obtain an accurate measure of plant height 
and width. To do this, IH first generates a binary image and 
uses the contourCut() function to crop the image as a final 
step. The image is cropped so all contours that are greater 
than the specified area are included in the final output image.

Executing processing workflows on a computing 
cluster

Once the user has established an appropriate processing 
workflow, the processing pipeline can be scaled to large, high-
throughput data sets (>50 000 images) and executed on a 
high-throughput computing grid (Fig. 2). For datasets of this 
size, the execution of basic processing tasks is challenging. IH 
utilizes Pegasus for translating a series of computational tasks 
into a Directed Acyclic Graph and uses HTCondor to exe-
cute the jobs in parallel on a computing cluster (Thain et al., 
2005). Prior to initiating any workflow, the user should ensure 
that the proper environmental variables are established and 
Pegasus and HTCondor are installed on the computing grid. 
Alternatively, users may consider the OSG Connect service, 
which has IH and all the prerequisites installed, and is free 
to all academic users (Pordes et  al., 2007). Full-scale data-
sets are available at /stash/project/@RicePhenomics/public/. 
It is recommended that a structured directory be created that 
provides a detailed classification for each image (i.e. species, 
treatment, imaging date). The structure and organization of 
images are essential for the proper loading and creation of 
metadata.

The successful execution of workflows for processing large 
datasets relies on the creation of three JSON (JavaScript 
Object Notation) formatted template files: Image Loading, 
Image Processing, and Configuration. Below, a description 
and purpose for each template file is provided. The aim of 
this section is not to describe each processing step, as this has 
been discussed in the previous section, but to provide a brief  
overview of the necessary steps to execute workflow pro-
cessing on computing clusters. An example of the necessary 
template files can be accessed through the IH website (http://
cropstressgenomics.org/data/html/ex_workflow_1.html).

Image loading
For large image sets the loading and the creation of descrip-
tors for each image can be a complex and laborious task. To 
circumvent these issues, IH uses an automated crawling pro-
cess, which parses the information captured in the hierarchi-
cal structure and names of the directories to load metadata 

for images. The image loading step in the IH workflow takes 
care of two key problems posed by having large data sets, 
assuming the template file is written correctly. First, it tracks 
all images, and loads them into a single database, making it 
easy to locate and process files in the future. Second, all meta-
data definitions are done as a result of the crawling.

The image loading template file will vary significantly 
based on how the images are named and organized. However, 
IH’s crawling function is designed to be flexible enough to 
be adapted to most directory structures. In this example, the 
images were captured with a LemnaTec Scanalyzer 3D and the 
pot identification number as well as the image time stamp are 
included in the directory names. Within each time-stamped 
folder there are several subdirectories that are named accord-
ing to the image perspective (top view or side view) and image 
type (VIS/RBG or FLUO). It is assumed, if  using a different 
system, that an appropriate method is in place to efficiently 
store and organize images after capture, as should be the case 
with other phenomics platforms that are capable of captur-
ing thousands of images. Basic information such as the plant 
identification number, time-stamp information, and image 
type can be extracted from the directory naming and struc-
ture. Additional metadata, such as genotype names, replicate 
number, position in the greenhouse, etc. can be appended to 
the final results file by supplying a comma-separated file. The 
file should contain a key column, which matches the iden-
tifiers extracted from the directory names. Several examples 
of IH’s automated crawling are provided at the IH webpage 
(http://cropstressgenomics.org/data/). This allows the final 
results file to be navigated and mined with greater ease and 
simplifies downstream statistical analysis.

Processing
The image-processing template designates the type and order 
of image processing functions. Separate workflows should be 
designed for each image type (rgbsv, rgbtv, fluosv, etc.) and, as 
a result, the template may become quite long. Each workflow 
is defined as a list of jobs. The jobs are not necessarily executed 
in the order specified in the list, but the job definition should 
be structured such that it follows the list order as closely as 
possible for ease of reading. It is essential for the name of each 
workflow to match the name of the image types in the database.

Execution of IH and statistics workflows
The execution of complex workflows in IH is relatively easy 
provided the proper template files (Image Loading, Image 
Processing, and Configuration) and the directories have been 
established, and are fulfilled using the ih-run command. This 
creates a date and time-stamped directory, which contains 
the output database, a copy of the submitted templates and 
all non-image raw-input files. IH provides several functions 
for extracting digital traits that describe plant morphol-
ogy, growth, and color/spectral qualities from processed 
images. A  complete list of available functions is provided 
as Supplementary Table S1. These metrics can be combined 
from multiple views to describe different morphological traits.

To demonstrate the performance of IH, we executed a 
processing workflow for FLUO side-view and VIS side- and 
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top-view images using several image sets of varying size 
(77665, 38357, and 19457 images). Images were processed 
on a computing cluster (106 node LINUX cluster, Opteron 
6272 2.1GHz, 4 CPU per node, 256 GB RAM per node). 
The small and medium image sets were completely processed 
in less than 13 hours, while the large image set consisting of 
>77K images were processed in slightly more than 30 hours 
(Fig. 3). The total time (from the user’s end) that is require 
to process image sets on a computing cluster is dependent 

on the number of tasks and the number of available proces-
sors. For the small and medium datasets (19457 and 38357 
images, respectively), the number of available processors was 
probably greater than the number of tasks, which explains 
the nearly equal processing times. However, in the large data-
set the number of available processors was far fewer than the 
number of tasks.

For all image sets the actual image-processing tasks 
accounted for less than 1% of  the total processing times. 

Fig. 2.  Schematic summarizing the creation and execution of supercomputing workflows using IH. IH requires four types of template files that contain 
the necessary information for image loading, processing, system configuration, and statistics workflows. The execution of the ‘ih-run’ command creates 
three directories, which contain the final output database, a copy of the submitted template files, and all non-image raw-input files. The ‘sql-aggregate’ 
function collects digital metric data from the intermediate databases, compiles the data and writes it to the output directory.
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Tasks involved with trait extraction and data compilation 
accounted for the majority of  computation time. The func-
tion “ih-extract-multi” accounted for between 57–69% of 
the total computation time, while the “ih-sql-aggregate” 
function accounted for between 25–31% of  total computa-
tion time. The “ih-extract-multi” is used to extract multi-
ple metrics (color data, moment data, dimensions, etc.) that 
are chosen by the user from processed images. A full list of 
available metrics is provided as Supplementary Table S2. 
While the computation time for simple morphological traits 
is typically low, the color classification/histogram function 
implemented in this workflow requires considerably more 
time and is probably the major factor contributing to the 
large computation times for this task. IH uses Sqlite to 
manage processing outputs, which improves portability but 
requires a relatively time-intensive collation step. Although 
IH can extract digital metrics from multiple images, without 
running into concurrency issues, the data must be written 
to different databases at the worker nodes, which then must 
be aggregated into a single database. The “ih-sql-aggregate” 
function combines output from all individual databases to a 
single final database.

Assessing plant growth with IH

IH contains various functions for extracting digital traits 
describing plant shape, size, and color/spectral properties from 
the final plant object. A subset of these descriptors is illus-
trated in Fig. 1B, and the full list is available as Supplementary 
Table S1. Several software programs have been developed to 
process plant image data (e.g. Yazdanbakhsh and Fisahn, 
2009; Galkovskyi et al., 2012; Tanabata et al., 2012; Pound 
et  al., 2013; Brown et  al., 2014; Klukas et  al., 2014; Whan 

et al., 2014; Fahlgren et al., 2015; Müller-Linow et al., 2015). 
To compare the accuracy of IH with existing plant image 
analysis software, a dataset consisting of 144 RGB images of 
72 rice plants during the early vegetative growth phase were 
processed using IH, LemnaGrid (www.LemnaTec.com), and 
PlantCV (Fahlgren et  al., 2015). Plants were imaged from 
two side-view angles and the foreground/plant pixels were 
summed from both side angles, and were used as a proxy for 
shoot biomass. This digital representation of shoot biomass, 
here termed projected shoot area (PSA), was compared to 
three manual phenotypic measurements (shoot area, shoot 
fresh weight, and shoot dry weight) recorded from the same 
group of plants. All software exhibited very high correlation 
with all phenotypic measurements (Fig. 4). Overall, the dif-
ferences in accuracy among the three processing software 
products were minor. LemnaGrid displayed slightly higher 
accuracy than both IH and PlantCV. Both LemnaGrid and 
PlantCV displayed slightly higher correlation with shoot area 
(r2=0.94) compared to IH (r2=0.93). The results indicate that 
the accuracy of IH is comparable to other image processing 
software.

From pixel-based digital traits to genes: a case study 
in rice

Selection for morphological traits, such as plant height, lodg-
ing resistance, and tillering capacity, are major contributing 
factors for increasing rice productivity over the past century. 
Rice breeders have defined specific ideotypes, which combine 
several traits to maximize photosynthetic capacity, growth 
habit, and grain production (Tandon and Jain, 2004; Peng 
et  al., 2008). However, classification and selection of ideo-
types are highly subjective, and they are based on visual clas-
sification systems developed by plant breeders. The advent of 
image-based plant phenomics allows for the non-destructive 
evaluation of phenotypes while reducing human error, and 
provides an opportunity to define digital traits that describe 
multidimensional phenotypes and morphological features. In 
this section we aim to identify the major plant architectural 
classes from rice images, define digital traits that describe 
aspects of plant morphology, and demonstrate the potential 
to identify genomic regions associated with these digital traits. 
To this end, we imaged a panel of 376 diverse rice genotypes 
during the late tillering stage (41 d after transplant) using a 
RGB/VIS camera.

To identify the major shape/plant architectural types in 
rice germplasm, raw image moments (M) were extracted from 
1548 side-view (SV) and 774 top-view (TV) images and hier-
archical clustering analysis was performed using the adjusted 
mean values for these digital metrics. Raw image moments 
extracted from binary images provide a numerical description 
of various properties of the foreground object, such as center 
of mass or orientation. Hierarchical clustering of raw image 
moments identified three major phenotypic groups (Fig. 5A). 
To determine how these groups differed in morphological 
features, a one-way ANOVA was performed using 23 digital 
traits that describe various morphological qualities (Fig. 5B, 
Suplemenatry Tables S3, S4). Significant differences between 

Fig. 3.  Computational time for image sets of various sizes. The processing 
speed of RGB and FLUO workflows was evaluated using three image sets 
of various size: small (19 475 images), medium (38 357 images) and large 
(77 665 images). The tasks were separated into four categories: system 
(Pegasus and condor related tasks), processing (actual image processing 
functions), trait extraction (‘ih-extract-multi’, ‘ih-stats-histogram’), and data 
compilation tasks (‘ih-sql-aggregate’). Time refers to the time experienced 
at the user’s end.
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the groups (P<0.0001) were observed for 20 traits that 
describe plant width, compactness, and biomass (Fig.  5B, 
Supplementary Table S4). Interestingly, no significant differ-
ences were observed for traits corresponding to plant height, 
suggesting that these groups largely differ in biomass produc-
tion and growth habit.

To identify genomic regions associated with plant architec-
ture, genome-wide association mapping was performed using 
36 901 SNPs (single nucleotide polymorphisms) and the 23 
digital traits for 359 genotypes (Supplementary Figs S2, S3). 
Three highly significant peaks were identified for Den1TV 
and GH1, which may be proxies for canopy density and erect 
growth habit, respectively (Fig. 6). Notably, the most signifi-
cant SNPs co-localize with genes previously associated with 

plant growth and development. A rice gene OsRCN4 (LOC_
Os04g33570) similar to TERMINAL FLOWER1 (TFL1) 
in Arabidopsis was located approximately 25 kb upstream 
of the most significant GWAS peak on chromosome 4 (see 
Supplementary Dataset S1). Moreover, several QTLs/genes 
known to regulate tillering, flowering time, and hormone 
homeostasis (Table  1) have been mapped to the long arm 
of rice chromosome 6, where a number of  highly significant 
SNPs populated a region of  ~861 Kb. The identification of 
significant associations with regions known to regulate plant 
morphology and flowering time suggests that digital trait 
outputs from IH can be a useful tool for the evaluation and 
selection of  genotypes exhibiting optimal morphological 
and agronomic traits.

Fig. 4.  Comparisons between projected shoot area derived from several publically available plant image processing software programs and conventional 
phenotypic measurements of plant biomass. Projected shoot area, here defined as the summation of plant pixels from two side-view images, was 
calculated using (A) IH, (B) PlantCV, and (C) LemnaGrid and compared to three manual measurements of biomass. Manual phenotypic measurements 
were recorded on 72 rice plants 28 d after transplanting. Correlation analysis was performed using Pearson’s method. All correlations were significant 
(P<0.0001).
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Discussion

Plant phenomics is a new and powerful approach; however 
there are still considerable challenges for plant scientists to 
extract biologically meaningful information from images. 
Many existing algorithms have been developed in the field of 
computer vision and can be utilized to extract morphological 
and color properties from plant images. However, an extensive 
knowledge of several programming languages is necessary for 
the efficient implementation of these methods on large data 

sets, and may be a skill set that is rare in most plant biol-
ogy research groups. To allow greater accessibility to these 
powerful algorithms in computer vision, IH combines utili-
ties from OpenCV and SciPy, and provides a user-friendly, 
broadly applicable image-processing framework that can be 
run locally on conventional desktops to develop processing 
pipelines. Processing functions available in IH can be applied 
to images captured from several sources, such as handheld 
SLR cameras or phenomics platforms other than LemnaTec, 
and can be used to process various types of images (RGB and 

Fig. 5.  Hierarchical clustering of raw image moments (M) and the distribution of a subset of digital traits for each cluster. (A) Hierarchical clustering of 
raw image moments extracted from both side-view and top-view images of rice plants at 41 d after transplant. Five representative plants from each of 
the three clusters are shown above the dendrogram. A Euclidian distance threshold of 2 × 1017 was used to separate the clusters, and is indicated by 
the horizontal red dashed line. (B) Boxplots for eight of the 22 digital traits illustrating the phenotypic distributions of the major clusters. Boxplots for the 
remaining 14 digital traits is provided as Supplementary Fig. S2. Abbreviations: CH, convex hull; GH, growth habit; Den, density; PSA, projected shoot 
area; TV, top view; SV, side view.
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FLUO). In recent years several groups have released software 
to process images derived from phenomics platforms (e.g. 
Klukas et  al., 2014; Fahlgren et  al., 2015). IH has several 
advantages over existing software.

First, IH is an open-source software. While other propri-
etary software, such as LemnaGrid, work seamlessly with 
LemnaTec platforms, the user is required to purchase soft-
ware licenses and is often confined to the processing algo-
rithms and metrics offered within the software package. 
Although LemnaGrid offers numerous descriptive metrics, 
users often want to address biological processes beyond sim-
ple morphology, which may cause them to seek resources out-
side of LemnaGrid. For example, a binning strategy was used 
by Campbell et al. (2015) to identify color ranges in fluores-
cence images that were responsive to salinity treatment. At 
the time of publication, the methods that they implemented 
were not available in LemnaGrid. Other open-source soft-
ware offers numerous metrics to describe plant morphology 
and color properties, and has also proved to be a means for 
new algorithms to be added, thus improving the flexibility of 
the software to address specific research needs (Klukas et al., 
2014; Fahlgren et al., 2015).

Second, IH can process images generated from various 
sources, included other non-LemnaTec phenomics platforms, 
flatbed scanners, SLR cameras, and non-RGB images (fluo-
rescence, hyperspectral, etc.). In addition to the pipelines pre-
sented above, several tutorials are provided at the IH website 
(http://cropstressgenomics.org/data/), which provide a com-
plete description of pipelines for processing FLUO and RGB 
images, for phenomics platforms that use overhead cameras 
to phenotype trays of plants, and for quantifying morpholog-
ical traits from images of seeds obtained with a conventional 
desktop scanner. Once a pipeline has been developed, the 
modular organization of IH functions then allows processing 
tasks to be easily translated to supercomputer workflows. In 
contrast, at the time of this publication, the functionalities 
of IAP are not easily accessible for images generated from 
platforms other than LemnaTec.

Third, IH has been developed to utilize the power of grid 
computing. Phenomics experiments produce a large amount 
of data, and although several user-friendly processing soft-
ware options are available, the computational requirements 
for such datasets exceed the capacity of desktop computers 
or workstations. Access to linux-based computational clus-
ters and a working knowledge of computer programing to 
integrate several existing software packages is necessary to 
process large image sets. IH circumvents these requirements 
by combining functionalities from OpenCV, SciPy, Condor, 
Sqlite, and Pegasus into a single toolkit that can be accessed 
by plant biologists with minimal programming expertise. 
Moreover, IH has been developed to be highly portable, thus 

Table 1.  Candidate genes and QTLs overlapping with other studies. GH, growth habit; Den, density; PSA, projected shoot area; CA, 
cropped area; Chr., chromosome

Chr. QTL position (bp) Trait(s) Candidate gene/ 
Reported QTLs

Reference

4 20,144,020-20,622,471 GH1, GH2, GH3, GH4 OsTFL1 (Nakagawa et al., 2002)
13,268,374-13,668,374 Den1TV, Den3TV, Den2SV, PSA OsRERJ1 (Kiribuchi et al., 2004)

6 26,031,137-26,892,628 Den1TV, Den2TV, Den3TV, Den1SV, Den3SV, CASV, WidthSV qIN3-6 (Yamamoto et al., 2001)
qPH6-2 (Duan et al., 2013)

12 25,302,716-25,702,716 Den1TV, Den3TV OsIAA3 (Nakamura et al., 2006)

Fig. 6.  Genome-wide association analysis for Den1TV (A) and GH1 (B). 
A threshold of P<10−4 was used to identify significant associations and 
is indicated by the red horizontal line in each plot. Abbreviations: Den, 
density; GH, growth habit; TV, top view; SV, side view.
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allowing simple installation to most Linux-based computing 
grids with minimal configuration and assistance from system 
administrators.

The integration of IH with OSG provides the computa-
tional resources necessary for processing large image sets in 
a reasonable time. At the time of this publication, several 
software packages for processing images derived from phe-
nomics platforms are publically available that have capabili-
ties for parallelizing workflows. For example, PlantCV uses 
a terminal multiplexer, such as Tmux (https://tmux.github.
io/) or Screen, to submit multiple processing jobs in parallel. 
However, these methods used for parallelization may not be 
adequate for realizing the full potential of super-computing 
facilities. Using this type of approach, computation is lim-
ited to the resources of a single machine. By contrast, with 
IH individual processing tasks within a workflow can be 
distributed to dozens or even hundreds of machines spread 
across the country in a manner that is transparent to the user, 
thus facilitating quick parallelization of processing tasks and 
analyses. This effectively allows any academic research group 
to develop and implement a processing workflow for large 
datasets without the need to purchase dedicated servers or 
workstations.

Image-based phenomics allows physiological and mor-
phological traits to be quantified non-destructively at a 
high frequency throughout a given period. The images con-
tain important digital traits that may provide phenotypes 
beyond what is typically quantified in conventional manual 
phenotyping. For instance, in the field of  computer vision, 
image moments are used to describe various properties of 
a contour, such as the size or centroid of  the object. Image 
moments have been used in plant and mammalian systems 
to classify or describe various features from images (Ortiz 
et al., 2013; Rojo-Arreola et al., 2014; Lin et al., 2015). The 
applicability of  IH functions for phenotyping large map-
ping populations are highlighted in the GWAS example 
presented above where 23 digital growth-related traits were 
quantified for 359 genotypes. The most highly significant 
signals were for metrics used to describe canopy density 
from top-view images (Den1TV, Den3TV) and GH1, which 
are traits that would be difficult to quantify manually for 
a population this size. Moreover, these SNPs were in close 
proximity to genes that are known to regulate plant mor-
phology in rice or other species, indicating that these signals 
are biologically relevant. For instance, an AtTFL1 ortholog 
was identified approximately 25 kB upstream of  the most 
significant SNP associated with GH1, GH2, GH3, and GH4 
on chromosome 4. While the role for this gene in rice is not 
known, AtTFL1 represses the transition from vegetative to 
reproductive development in Arabidopsis (Shannon and 
Meeks-Wagner, 1991; Wickland and Hanzawa, 2015). In 
rice, ectopic overexpression of  the AtTFL1 orthologs RCN1 
and RCN2, prolong the vegetative growth phase and lead 
to an over-production of  leaves (Nakagawa et  al., 2002). 
Although OsRCN4 has yet to be characterized, the digital 
phenotypes exhibited by the allelic groups at the QTL on 
chromosome 4 are in agreement with the phenotypes exhib-
ited by other TFL1 homologs in rice.

In addition to TFL1, two genes were identified within QTLs 
that have been shown to regulate plant growth and morphol-
ogy through hormones such as jasmonic acid (JA) and auxin. 
A  QTL spanning ~400 kb on chromosome 4 was associ-
ated with four digital traits (Den1TV, Den3TV, Den2SV, PSA). 
OsRJR1 (LOC_Os04g23550) encodes a bHLH transcription 
factor and is located less than 2 kb upstream of the most sig-
nificant SNP for Den3TV (id4003991). A  study by Kiribuchi 
et  al. (2004) showed that OsRJR1 is a positive regulator of 
JA-mediated inhibition of shoot growth. While this study 
provided biological insight into OsRJR1 function, further 
experimentation is required to elucidate the role of this gene in 
natural variation of plant morphology. A second gene known 
to be involved with auxin signaling was identified within a 
QTL associated with Den1TV and Den3TV on chromosome 
12. OsIAA3 is a member of the Aux/IAA transcription factor 
family, and has been shown to regulate auxin responses in rice 
(Nakamura et al., 2006). Overexpression of OsIAA3 resulted 
in auxin insensitivity, with transgenic plants exhibiting reduced 
crown root formation, shorter leaf sheaths, and abnormal leaf 
development, indicating that it is a negative regulator of auxin 
responses (Nakamura et al., 2006). The identification of genes 
that are known to regulate morphology and development in 
rice and other species demonstrate that these digital traits may 
be associated with important biological processes.

Over the past decade the amount of genotypic data has 
increased substantially, which has allowed researchers to 
examine the genome and transcriptome at a high resolution 
and associate genomic data with a phenotype. However, phe-
notyping remains a significant bottleneck for bridging the 
genotype–phenotype gap. The advent of image-based phe-
nomics allows large populations of plants to be phenotype 
non-destructively, and provides an opportunity to quantify 
phenotypes that were traditionally evaluated subjectively or 
those that are not visible with the human eye. Despite the 
large investment in the construction of phenomics facilities, 
few open-source software solutions have been developed that 
are capable of processing large datasets in a reasonable time. 
IH provides a framework to develop processing workflows 
and execute them in a distributed computing infrastructure.

Availability and Requirements

Project name: Image Harvest
Project home page: http://cropstressgenomics.org/data/html/
index.html; https://git.unl.edu/aknecht2/ih/
Operating system(s): Windows, Linux, OS X
Programming language: Python
Other requirements: Matplotlib 1.3.1+; NumPy 1.7+; 
OpenCV 2.4.x; GTK2 (including headers) 2.24+; blas 3.2.1+; 
lapack 3.2.1+; libav 0.5.3+; cmake 2.8.12+; ffmpeg 2.0.5+; 
Pandas 0.13.1+; Cython 0.21.1+; python-dateutil 1.4.1+; 
PyMeanShift 0.2.0+; SciPy 0.13.1+; Pegasus 4.4.0+; Java 
1.8+; Perl 5.10+; HTCondor 8.3.0+
License: GNU GPL (https://git.unl.edu/aknecht2/ih/blob/
master/GPL.txt)
Any restrictions to use by non-academics: See GPL
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Supplementary data

Supplementary data are available at JXB online. Full process-
ing scripts and example images can be accessed at http://crop-
stressgenomics.org/data/.

Figure S1. Imaging environment used for phenotyping with 
a conventional SLR camera

Figure S2. Boxplots summarizing the phenotypic distribu-
tion within each cluster for 14 digital traits.

Figure S3. Visualization of 21 of the 22 digital traits derived 
from IH metrics.

Table S1. A complete list of functions that are available in 
Image Harvest.

Table S2. Arguments and metrics returned from 
“ih-extract-multi”.

Table S3. Digital traits used to describe plant morphologi-
cal qualities.

Table S4. ANOVA results and phenotypic means for each 
digital trait and cluster.

Dataset S1. Candidate genes within a 200-kb window of 
significant SNPs: a window of 200 kb was chosen based on the 
estimated linkage disequilibrium in rice (Zhao et al., 2011).

Acknowledgements
Authors’ contributions: MC conducted the experiments, and HW and MC 
designed the experiments. AK developed the program under the supervision 
of DS, AC and HW. The manuscript was written by AK and MC, and was 
edited by HW and DS. MC performed the statically and genetic analyses. HW 
conceived the study. All authors have read and approved the final manuscript. 
The authors declare that they have no competing interests. This works was sup-
ported by National Science Foundation through Award No. 1238125 to HW.

References
Bradski G. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software 
Tools 25, 120–126.

Brown TB, Cheng R, Sirault XRR, Rungrat T, Murray KD, Trtilek M, 
Furbank RT, Badger M, Pogson BJ, Borevitz JO. 2014. TraitCapture: 
Genomic and environment modelling of plant phenomic data. Current 
Opinion in Plant Biology 18, 73–79.

Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H. 
2015. Integrating image-based phenomics and association analysis to 
dissect the genetic architecture of temporal salinity responses in rice. Plant 
Physiology 168, 1476–1489.

Dimond AE. 1958 The UC system for producing healthy container-grown 
plants. AIBS Bulletin 8, 46.

Duan M, Sun Z, Shu L, Tan Y, Yu D, Sun X, Liu R, Li Y, Gong S, Yuan 
D. 2013. Genetic analysis of an elite super-hybrid rice parent using high-
density SNP markers. Rice 6, 1–15.

Eizenga GC, Ali M, Bryant RJ, Yeater KM, McClung AM, McCouch 
SR. 2014. Registration of the rice diversity panel 1 for genomewide 
association studies. Journal of Plant Registrations 8, 109–116.

Fahlgren N, Feldman M, Gehan MA, et al. 2015. A versatile 
phenotyping system and analytics platform reveals diverse temporal 
responses to water availability in Setaria. Molecular Plant 8, 
1520–1535.

Famoso AN, Zhao K, Clark RT, Tung C-W, Wright MH, Bustamante 
C, Kochian LV, McCouch SR. 2011. Genetic architecture of aluminum 
tolerance in rice (Oryza sativa) determined through genome-wide 
association analysis and QTL mapping. PLoS genetics 7, e1002221.

Fraas S, Luthen H. 2015. Novel imaging-based phenotyping strategies 
for dissecting crosstalk in plant development. Journal of Experimental 
Botany 66, 4947–4955.

Furbank RT, Tester M. 2011. Phenomics – technologies to relieve the 
phenotyping bottleneck. Trends in Plant Science 16, 635–644.

Galkovskyi T, Mileyko Y, Bucksch A, et al. 2012. GiA Roots: software 
for the high throughput analysis of plant root system architecture. BMC 
Plant Biology 12, 116.

Gjuvsland AB, Vik JO, Beard DA, Hunter PJ, Omholt SW. 2013. 
Bridging the genotype-phenotype gap: what does it take? The Journal of 
Physiology 591, 2055–2066.

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, 
Eskin E. 2008. Efficient control of population structure in model organism 
association mapping. Genetics 178, 1709–1723.

Kiribuchi K, Sugimori M, Takeda M, et al. 2004. RERJ1, a jasmonic 
acid-responsive gene from rice, encodes a basic helix-loop-helix protein. 
Biochemical and Biophysical Research Communications 325, 857–863.

Klukas C, Chen D, Pape J. 2014. Integrated Analysis Platform : an 
open-source information system for high-throughput.Plant Physiology 165, 
506–518.

Kvilekval K, Fedorov D, Obara B, Singh A, Manjunath BS. 2009. 
Bisque: A platform for bioimage analysis and management. Bioinformatics 
26, 544–552.

Lin S-L, Chang F-L, Ho S-Y, Charoenkwan P, Wang K-W, Huang H-
L. 2015. Predicting neuroinflammation in morphine tolerance for tolerance 
therapy from immunostaining images of rat spinal cord. PloS one 10, 
e0139806.

Müller-Linow M, Pinto-Espinosa F, Scharr H, Rascher U. 2015. The 
leaf angle distribution of natural plant populations: assessing the canopy 
with a novel software tool. Plant Methods 11, 1–16.

Nakagawa M, Shimamoto K, Kyozuka J. 2002. Overexpression of 
RCN1 and RCN2, rice Terminal Flower 1/Centroradialis homologs, confers 
delay of phase transition and altered panicle morphology in rice. Plant 
Journal 29, 743–750.

Nakamura A, Umemura I, Gomi K, Hasegawa Y, Kitano H, Sazuka T, 
Matsuoka M. 2006. Production and characterization of auxin-insensitive 
rice by overexpression of a mutagenized rice IAA protein. Plant Journal 46, 
297–306.

Ortiz A, Gorriz JM, Ramírez J, Salas-Gonzalez D. 2013. Improving 
MRI segmentation with probabilistic GHSOM and multiobjective 
optimization. Neurocomputing 114, 118–131.

Peng S, Khush GS, Virk P, Tang Q, Zou Y. 2008. Progress in ideotype 
breeding to increase rice yield potential. Field Crops Research 108, 32–38.

Pordes R, Petravick D, Kramer B, et al. 2007. The open science grid. 
Journal of Physics: Conference Series 12057.

Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, 
Pridmore T. 2013. RootNav: Navigating Images of Complex Root 
Architectures. Plant Physiology 162, 1802–1814.

R Core Team. 2014. R: A Language and Environment for Statistical 
Computing. https://www.r-project.org/.

Rojo-Arreola L, Long T, Asarnow D, Suzuki BM, Singh R, Caffrey 
CR. 2014. Chemical and genetic validation of the statin drug target to treat 
the helminth disease, schistosomiasis. PloS one 9, e87594.

Shannon S, Meeks-Wagner D. 1991. A mutation in the Arabidopsis 
TFL1 gene affects inflorescence meristem development. The Plant cell 3, 
877–892.

Sozzani R, Benfey PN. 2011. High-throughput phenotyping of 
multicellular organisms: finding the link between genotype and phenotype. 
Genome Biology 12, 219.

Tanabata T, Shibaya T, Hori K, Ebana K, Yano M. 2012. SmartGrain: 
High-throughput phenotyping software for measuring seed shape through 
image analysis. Plant Physiology 160, 1871–1880.

Tandon JP, Jain HK. 2004. Plant ideotype: the concept and application. 
In: Jain HK, Kharkwal MC. eds. Plant Breeding. Springer, 585–600.

Thain D, Tannenbaum T, Livny M. 2005. Distributed computing in 
practice: the Condor experience. Concurrency and computation: practice 
and experience 17, 323–356.

Whan AP, Smith AB, Cavanagh CR, Ral JPF, Shaw LM, Howitt CA, 
Bischof L. 2014. GrainScan: a low cost, fast method for grain size and 
colour measurements. Plant Methods 10, 23.

Wickland DP, Hanzawa Y. 2015. The FLOWERING LOCUS T/TERMINAL 
FLOWER 1 gene family: functional evolution and molecular mechanisms. 
Molecular Plant 8, 983–997.

Downloaded from https://academic.oup.com/jxb/article-abstract/67/11/3587/2197789
by University of Nebraska-Lincoln Libraries user
on 19 April 2018

http://cropstressgenomics.org/data/
http://cropstressgenomics.org/data/
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw176/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw176/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw176/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw176/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw176/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw176/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw176/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw176/-/DC1
https://www.r-project.org/


Image Harvest: From pixels to traits  |  3599

Yamamoto T, Taguchi-Shiobara F, Ukai Y, Sasaki T, Yano M. 2001. 
Mapping quantitative trait loci for days-to-heading, and culm, panicle 
and internode lengths in a BC1F3 population using an elite rice variety, 
koshihikari, as the recurrent parent. Breeding Science 51, 63–71.

Yang W, Duan L, Chen G, Xiong L, Liu Q. 2013. Plant phenomics and 
high-throughput phenotyping: accelerating rice functional genomics using 
multidisciplinary technologies. Current Opinion in Plant Biology 16, 180–187.

Yazdanbakhsh N, Fisahn J. 2009. High throughput phenotyping of 
root growth dynamics, lateral root formation, root architecture and root 
hair development enabled by PlaRoM. Functional Plant Biology 36, 
938–946.

Zhao K, Tung C-W, Eizenga GC, et al. 2011. Genome-wide association 
mapping reveals a rich genetic architecture of complex traits in Oryza 
sativa. Nature Communications 2, 467.

Downloaded from https://academic.oup.com/jxb/article-abstract/67/11/3587/2197789
by University of Nebraska-Lincoln Libraries user
on 19 April 2018


