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Abstract

Elucidating genotype-by-environment interactions (G×E) and partitioning its contribution to the 1

phenotypic variation remains a long standing challenge for plant scientists. Recent quantitative genetic 2

frameworks have improved predictions of G×E responses. However, these models do not explicitly 3

consider the processes that give rise to G×E. To overcome this limitation, we propose a novel framework 4

to elucidate the genetic basis of dynamic shoot growth trajectories under contrasting water regimes using 5

genome-wide markers to model genotype-specific shoot growth trajectories as a function of soil water 6

availability. A rice diversity panel was phenotyped daily over a period of twenty-one days during the 7

early vegetative stage using an automated, high-throughput image-based, phenotyping platform that 8

enabled us to estimate daily shoot biomass and soil water content. Using these data, we modeled shoot 9

growth as a function of time and soil water content, and were able to determine the soil water content 10

and/or time point where an inflection in the growth trajectory occurred. We found that larger, more 11

vigorous plants tend to exhibit an earlier repression in growth compared to smaller, slow growing plants, 12

indicating a potential trade off between early vigor and tolerance to prolonged water deficits. We 13

integrated the growth model within a hierarchical Bayesian framework and used marker information to 14

estimate model parameters and the associated loci through genome-wide association analysis. Genomic 15

inference for model parameters and time of inflection (TOI) identified several candidate genes. Among 16

them an aquaporin, OsPIP1;1 was identified as a candidate for time of inflection under drought and 17

showed significantly lower expression in accessions exhibiting later TOI in drought. This study is the 18

first to utilize a genome-enabled growth model to study drought responses in rice, and presents a new 19

approach to jointly model dynamic morpho-physiological responses and environmental covariates. 20

Introduction 21

Rice is one of the most important food crops, and is a major source of food security for more than 3.5 22

billion people worldwide. Adequate water availability is essential for proper vegetative growth and grain 23

development. Approximately 40 million hectares of rainfed rice is grown worldwide, with the majority of 24

production being concentrated in developing nations (Singh and Singh, 2000). Erratic precipitation 25
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events, as well as the increased competition for fresh water for non-agricultural uses has become a major 26

constraint for rice production (Korres et al., 2017). 27

Given the socioeconomic impacts of water limitations, improving drought tolerance is a major target 28

for breeding programs. However, the multiple and often unpredictable drought stress scenarios in 29

drought prone environment makes improvement of drought tolerance in rice challenging. Further, traits 30

that are important for adaptation to limited water availability, particularly morpho-physiological traits, 31

are complex and often have low heritability (Kamoshita et al., 2008). These characteristics impede the 32

discovery of loci that confer large effects on the phenotype, and limit the utility of marker-assisted 33

selection for improving drought tolerance. 34

Recent advances in phenomics and genomics have offered new tools for discovering and quantifying 35

traits associated with drought adaptation, and their genetic basis (Berger et al., 2010; Furbank and 36

Tester, 2011; Araus and Cairns, 2014). Access to high-throughput, image-based phenomic systems in the 37

public sector has allowed researchers to non-destructively measure traits of interest for large populations 38

in highly controlled greenhouse or field environments. These data can be leveraged to uncover complex 39

physiological responses to suboptimal conditions throughout the growing season and understand their 40

contribution to agronomic performance. Several studies have used these traits as covariates in the 41

conventional genomic prediction frameworks to increase prediction accuracies for agronomic traits such as 42

yield (Aguate et al., 2017; Montesinos-López et al., 2017; Sun et al., 2017; Krause et al., 2019). However, 43

with these approaches it is unclear how these secondary phenotypes are contributing to trait of interest. 44

Process-based eco-physiological models seek to predict outcomes by explicitly modeling the 45

interaction of biological processes with environmental covariates (Batchelor et al., 2002; van Ittersum 46

et al., 2003; Parent and Tardieu, 2014). These models are routinely used to predict the development or 47

productivity of a crop in a given set of environments. However, a major disadvantage of these models is 48

that genotypic variation is often unaccounted or not optimally utilized in the predictions (Onogi et al., 49

2016). Thus, their application in genomic prediction or inference studies is limited. Several studies have 50

sought to integrate crop growth models with established quantitative genetic frameworks (Technow et al., 51

2015; Onogi et al., 2016; Wang et al., 2019). For instance, Technow et al. (2015) used an approximate 52

Bayesian computation framework to integrate crop growth modeling and whole-genome prediction to 53

predict yield in maize. The authors showed a clear advantage of the genome-enabled crop growth model 54

over the conventional genomic prediction approach using simulated data. More recently, Onogi et al. 55

(2016) leveraged a crop growth model to predict heading date in rice. The authors integrated the 56

phenological model proposed by Yin et al. (1997) and implemented by Nakagawa et al. (2005) with a 57

whole-genome prediction using a hierarchical Bayesian approach. The hierarchical Bayesian approach 58

outperformed conventional genomic prediction models as well as approaches that fit the crop growth 59

model and genomic prediction model in separate steps. The advantage of the integrated approaches 60

proposed by Technow et al. (2015) and Onogi et al. (2016) is that model parameter estimates are 61

informed by the genomic relationships among the accessions, which can improve the accuracy of the 62

parameter estimates. Moreover, since these approaches are based on a Bayesian whole-genome regression 63

framework, it predicts markers effects, enabling marker level association with model parameters. 64

However, to date no studies have leveraged these genome-enabled crop growth models for biological 65

inference or to elucidate the genetic loci that influence model parameters. 66

In the current study, we sought to leverage the frameworks developed by Onogi et al. (2016) to study 67

the effects of water deficit on shoot growth trajectories for a diverse set of rice accessions. To this end, 68

rice accessions were subjected to drought stress (20 % field capacity, FC) and shoot growth was 69

quantified over 20 days using an image-based phenomics platform. A corresponding set of rice accessions 70

was maintained under optimal water conditions (90 % FC). The automated phenotyping system allowed 71

us to estimate daily water use by each accession and the soil water content. Together, these data were 72

used to develop a novel growth model that models shoot growth trajectories as a function of soil water 73

content and time. This growth model was integrated into the hierarchical Bayesian framework of Onogi 74

et al. (2016) to elucidate the genes underlying model parameters. This approach provides a biologically 75

meaningful framework that simultaneously (1) models the interrelationship between growth rate and soil 76

water availability, (2) estimates quantitative trait loci (QTL) effects for model parameters, and (3) 77
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provides genetic values for model parameters that can be used for genetic evaluation. 78
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Materials and Methods 79

Plant materials and greenhouse conditions 80

A subset of the Rice Diversity Panel 1 were used in this study (Zhao et al., 2011). Seed preparation was 81

performed following Campbell et al. (2015). Briefly, seeds were surface sterilized with Thiram fungicide 82

and were germinated on moist paper towels in plastic boxes for 3 days. Three uniform seedlings were 83

selected and transplanted to pots (150mm diameter x 200 mm height) filled with approximately 2.5 kg of 84

UC Mix. Square containers were placed below each pot to allow water to collect. Temperatures in the 85

greenhouses were maintained at 28/26.0◦C (day/night), and relative humidity was maintained at 86

approximately 60% throughout the day and night. 87

Experimental Design 88

Three hundred seventy-eight accessions were phenotyped at the Plant Accelerator, Australian Plant 89

Phenomics Facility, at the University of Adelaide, SA, Australia in three independent experiments. The 90

experiments were performed from February to April 2016. The 378 accessions were randomly partitioned 91

in two smarthouses, each of which consisted of 432 pots positioned across 24 lanes. In each experiment, a 92

subset of 54 accessions were randomly selected and two replicates were planted for each 93

accession/treatment combination. A split-plot design was employed with two consecutive pots having the 94

same accession, but with the two different water regimes randomly assigned to them. 95

Seven days after transplanting to soil, plants were thinned to one seedling per pot and two layers of 96

blue mesh was placed on top of the soil to reduce soil water evaporation. At 11 days after transplant 97

(DAT), the plants were loaded on the imaging system and were watered to 90% field capacity. Water was 98

withheld from one of the two pots for each accession beginning at 13 DAT. Water was withheld until the 99

end of the experiment or until the FC reached 20%, after which the plants were maintained at 20% FC. 100

Image analysis 101

The plants were imaged each day from 13 to 33 DAT using a visible (red–green–blue camera; Basler Pilot 102

piA2400–12 gc, Ahrensburg, Germany) from two side-view angles separated by 90 degree and a single 103

top view. The LemnaGrid software was used to extract “plant pixels” from RGB images. The image 104

analysis pipeline is identical to that described in Campbell et al. (2018). “Plant pixels” from each of the 105

RGB images for each plant and time point were summed and was used as a proxy for shoot biomass. We 106

refer to this digital trait as projected shoot area (PSA). Several studies have shown that this metric is 107

accurate representation of shoot biomass (Campbell et al., 2015; Golzarian et al., 2011; Knecht et al., 108

2016). Outlier plants at each time point were detected for each trait using the 1.5(IQR) rule. Plants that 109

were flagged as potential outliers were plotted and inspected visually and those that exhibited abnormal 110

growth patterns were removed prior to downstream analyses. In total, 221 plants were removed, leaving 111

2,586 plants for downstream analyses. Since the genome-enabled crop growth model does not 112

accommodate missing data, accessions with missing values were excluded from further analyses. This 113

culling resulted in a total of 349 accessions being used for downstream analyses. 114

Modeling shoot growth as a function of time and soil water content 115

To model the effects of water deficit on shoot growth trajectories, we devised a growth model that is 116

essentially an extension of the classical Gompertz growth model. The Gompertz growth model was 117

modified so that shoot growth trajectories were modeled as a function of time and soil water content. 118

This model is referred to as the WSI-Gomp model in the remainder of the manuscript. The WSI-Gomp 119

model and its relationship with the classical Gompertz growth model are discussed in greater detail in 120

the Results section (see “Defining the growth model”). The WSI-Gomp model is given by 121

PSA(t) = PSAmaxe
−e−r(t−WSIα)

(1)

4/22

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/690479doi: bioRxiv preprint first posted online Jul. 2, 2019; 

http://dx.doi.org/10.1101/690479
http://creativecommons.org/licenses/by-nc-nd/4.0/


where PSAmax is a parameter that describes the maximum biomass achieved by the plant; r is a
parameter that describes the absolute growth rate; t is a vector of standardized time values [0,1]; and α
is a genotype-specific tuning parameter that modifies the effect of WSI on PSA. WSI is the water stress
index, a unitless index that describes the severity of water stress, and is given by

WSI =
FCt − FCCrit
FCOpt − FCCrit

(2)

FCt is the portion of field capacity at time t; FCCrit (critical field capacity) is the proportion of field 122

capacity in which growth ceases; FCOpt is the proportion of field capacity that is optimal for growth. 123

FC was calculated at each time point from pot weights given by the automated watering system. Since 124

FCCrit and FCOpt are unknown and likely to be genotype-dependant, we assumed that the optimal 125

conditions for growth in rice occur when the soil is completely saturated, and the critical value for FC is 126

equal to 0.1. Although, these assumptions require empirical evidence to validate, they provide a 127

standardized metric that describes soil water content in a decreasing non-linear trend that is on the same 128

scale as the standardized time values. These characteristics allow PSA to be modeled as a function of 129

time and soil water content using the Gompertz growth model. 130

Leveraging whole genome regression to estimate model parameters 131

The “integrated approach” developed by Onogi et al. (2016) uses a hierarchical Bayesian framework to
simultaneously infer of growth model parameters and marker effects. Thus, by leveraging the genetic
relationships between accessions, the integrated approach should yield more accurate solutions for the
model parameters. The details of the “integrated approach” is given in Onogi et al. (2016). Briefly,
solutions for the growth model parameters are regressed on genome-wide markers and extended Bayesian
LASSO (EBL) is used to predict marker effects for each of the model parameters. The regression model
is given by

y = µ+ Wβ + ε (3)

W is a n×m matrix of marker genotypes coded as -1, 0, 1 and n is the number of accessions (349) and
m is the number of markers (33,697); µ is the intercept for each parameter; β is a m× 1 vector of
predicted marker effect for each model parameter. The prior distribution of marker effects for marker i is

βi ∼ N (0,
1

τ20 τ
2
i

) (4)

τ2i ∼ inverse− gamma(1,
δ2η2i

2
) (5)

δ2 ∼ gamma(φ, ω) (6)

η2i ∼ gamma(ψ, θ) (7)

τ2i is the precision for the effect of marker i; η2i is the marker-specific shrinkage parameter for marker i;
δ2 is the global shrinkage parameter; and ω, φ, θ, and ψ are hyperparameters. Default values were used
for hyperparameters. We assume the following for WSI-Gomp model parameters

PSAmax ∼ N (µPSAmax + WβPSAmax ,
1

τ20,PSAmax
) (8)

r ∼ N (µr + Wβr,
1

τ20,r
) (9)

α ∼ N (µα + Wβα,
1

τ20,α
) (10)

τ20,p is the residual precisions for model parameter p. Moreover, for the residuals we assume N (0, 1
τ2
o

). 132

With the “integrated approach” proposed by Onogi et al. (2016), model parameters are inferred using a 133

variational Bayes approach in which means and variances of the growth model parameters are obtained 134

using Markov chain Monte Carlo sampling and are used to update EBL parameters. 135
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Genome-wide association for time of inflection 136

We sought to utilize the WSI-Gomp model to identify genomic loci that influenced the timing of the 137

transition to a declining growth rate. To this end we used model parameters obtained from the 138

hierarchical Bayesian approach described above and observed WSI values to solve for the time of 139

inflection (TOI). In the classical Gompertz growth model, PSA(t) = PSAmaxe
−e−r(t−To) , the growth 140

rate begins to decline when the (t− To) term becomes positive (e.g. when t exceeds To). Thus, To can be 141

defined as the time of inflection. In the WSI-Gomp model, this component is given by (t−WSIα). Thus, 142

the time of inflection occurs when t ≥WSIα. Using the hierarchical Bayesian approach, we obtained 143

estimates for α for each accession in drought and control conditions, and used these values to solve for 144

TOI using WSI values for each corresponding plant in each experiment. TOI was defined as the first day 145

in which (t−WSIα) was positive. This yielded a single TOI value for each plant in each experiment. 146

These TOI values were used as a derived phenotype for further genome-wide association study
(GWAS) analysis. The following Bayesian LASSO regression model was fit using the BGLR package
(Pérez and de Los Campos, 2014)

y = Xβ + Za + e (11)

where X is an incidence matrix relating the vector β of fixed effects for experiment to observations, Z is 147

an incidence matrix relating the vector of random marker effects a to y, and e is the residual. Since the 148

vector y is a vector of discrete TOI values, y was treated as an ordinal response and a probit link 149

function was used. In Bayesian LASSO, the marginal prior distribution for each marker effect is a double 150

exponential function that includes an unknown parameter λ2 with a prior distribution λ2 ∼ gamma(r, s) 151

(Pérez and de Los Campos, 2014). BGLR sets s = 1.1 by default and solves for r based on the “prior” 152

R2 of the model. Details on the BL approach implemented in BGLR is provided in the package vignette. 153

A Gaussian prior with mean zero and variance equal to 1× 1010 was used for fixed effects. 154

Gene expression analysis 155

To assess the expression of candidate genes we utilized a publicly available data set consisting of RNA 156

sequencing data for 91 diverse rice accessions (Campbell et al., 2019). Of these 91 accessions, 87 157

overlapped with accessions included in this study. The collection, processing and analysis of these data 158

are described in detail in Campbell et al. (2019). Briefly, best linear unbiased prediction (BLUPs) were 159

obtained for each gene and these values were transformed into the quantiles of a standard normal 160

distribution with ties broken randomly. This ensured that the expression of each gene was normally 161

distributed and inference from the linear model was reliable. To compare expression levels between allelic 162

groups at a given SNP, a linear model was fit that included the first four principle components of the 163

kinship matrix and the SNP genotype. All terms were considered fixed. This model was compared to a 164

null model that included all terms described above, but omitted the SNP genotype. The two models 165

were compared using a likelihood ratio test. The residuals from the null model were used to plot 166

expression levels as shown in Figure 7. Thus these residuals show the expression level in each accession 167

while accounting for population structure. 168
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Results 169

Image-based phenotyping captures the sensitivity of rice to drought stress 170

To examine drought responses in rice (Oryza sativa), a diversity panel was phenotyped over a period of 171

21 days during the early vegetative stage using an automated high-throughput phenotyping platform 172

(Supplemental File S1). The diversity panel consists of 349 accessions from 79 countries, and captures 173

much of the genetic diversity within cultivated rice (Zhao et al., 2011). The 349 accessions were grown in 174

a partially replicated paired design, in which for each accession the control, well watered plants were 175

grown alongside the drought stressed plant. 176

All plants were watered to 90% FC nine days after transplanting (13 day-old plants), and water was 177

withheld from day 14 on wards for the drought treatment plants. The drought stressed plants were only 178

rewatered if their FC dropped below 20%. A simple t-test was carried out at each time point to 179

determine when a significant reduction in soil water availability was experienced. A significant difference 180

in pot water content (FC) was observed from second day of imaging (Figure 1; p < 0.0024, Bonferroni’s 181

correction with α = 0.05), when the drought plants on average were at 90.9% FC. This time point was 182

selected to mark the onset of drought stress. 183

The impact of drought stress on shoot growth (biomass) was estimated from RGB images and 184

expressed as a digital metric called PSA. An ANOVA was carried out at each time point using the 185

following linear model PSAt = µt + Trta +Acci + Trta ×Accai + ei, where PSAt is the trait at time t 186

for accession i and treatment a, µ is the overall mean at time t, Trt is the effect of the ath treatment, 187

Acci is the effect 188
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Figure 1. Effect of water deficit on shoot growth.
(A) Mean shoot growth trajectories (PSA) in drought and
control conditions over 21 days of imaging. (B) Mean percent
field capacity in drought and control conditions over the
21 days of imaging. Water was withheld starting at day
1 of imaging. The shaded regions indicate the standard
deviation for each treatment.

of the ith 189

accession, Trt×Accai is the interaction 190

between Trt and Acc. Significant effects 191

for the interaction between accession 192

and treatment were observed from 193

day 16 onward. Thus, during the early 194

time points the main effects of treatment 195

could be interpreted. Drought treatment 196

had a significant effect on PSA beginning 197

on the fourth day of imaging (Figure 1B; 198

p < 0.0024, Bonferroni’s correction with 199

α = 0.05). Interestingly, at this time point 200

drought treated plants, on average, were 201

at 81.9% FC, which is only approximately 202

12.5% below control plants. These 203

data suggests that even a small limitation 204

of water can have a significant impact on 205

shoot growth in rice, and thus confirming 206

the high level of drought sensitivity 207

reported for rice (Lafitte et al., 2004). 208

Defining the growth model 209

The Gompertz growth model has 210

been used extensively to model asymptotic 211

processes that exhibit a sigmoid trend 212

(Winsor, 1932). For the drought conditions 213

imposed in the current study, we expect 214

shoot growth to follow an exponential 215

trajectory during the initial time points 216

when soil water is not limiting. However, as the soil dries out the growth rate should slow, and 217
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eventually when soil water content falls below some threshold, growth should cease completely. This 218

sigmoid/ asymptotic trend is to some degree visible in the mean growth trajectory in Figure 1A. Thus, 219

the trend exhibited by plants in drought conditions can be modeled using the Gompertz growth model. 220

The classical Gompertz model is given by PSA(t) = PSAmaxe
−e−r(t−To) , where t is a vector 221

of time values, r is the absolute growth rate, PSAmax is the maximum biomass (e.g. asymptote), and To 222

is the inflection point in the growth curve where the relative growth rate begins to slow. Figure 2A 223

provides a graphical summary of the classical Gompertz model. While the classical Gompertz model 224

provides an intuitive framework to model asymptotic growth trajectories, in its current form it does not 225

accommodate for environmental data. Thus it cannot be used to address how shoot growth varies in 226

response to soil water content. 227
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Figure 2. Graphical representation of the classical
Gompertz model and the WSI-Gomp model (A) The
classical Gompertz growth model was used to generate PSA
values over a 21-day period. The parameter values used are
provided in the top left corner of the plot. The grey, vertical
broken line indicates the inflection point (To). (B) The
WSI-Gompertz growth model was used to generate PSA
values over a 21-day period. PSA values are shown using
dark blue points and broken line. The light blue points and
line indicate the WSI values over the 21-day period The
grey, vertical broken line indicates the inflection point (To).

To address this limitation, 228

we sought to modify the Gompertz growth 229

model so that shoot growth trajectories 230

could be modeled as a function of time and 231

soil water content. The objective was to 232

develop a model with a similar form to the 233

classical Gompertz model, but allowed us 234

to determine the soil water content value 235

that results in inflection of the growth 236

trend. Since the automated phenotyping 237

system provides daily records for soil water 238

content for each plant, we defined an index 239

(water stress index, WSI) that reflects 240

the severity of water stress. WSI is given 241

by WSI = FCt−FCCrit
FCOpt−FCCrit , where FCt 242

indicates the percent field capacity (FC) 243

at time t, FCOpt is the optimal percent 244

field capacity for growth, and FCCrit is 245

the percent field capacity at which growth 246

ceases. Since these values are expected 247

to vary depending on the genotype, we 248

assumed that growth will cease at 10% FC 249

(FCCrit = 1) and the growth will proceed 250

optimally when the soil is saturated 251

(FCOpt = 100). This equation provides 252

a unitless metric that will vary between 0 253

and 1, with higher values indicating lower 254

water stress and lower values indicating 255

a greater stress pressure. For this metric to 256

be introduced into the Gompertz growth 257

model, we standardized the time values so 258

that they ranged from 0 to 1. Finally, we 259

introduced a third parameter (α into the 260

model that act as a genotype-dependant 261

tuning parameter and modifies 262

the effect of WSI on growth rate. This 263

new WSI-integrated model (WSI-Gomp) is 264

given by PSA(t) = PSAmaxe
−e−r(t−WSIα)

. 265

The WSI-Gomp model is shown in Figure 266

2B. 267

To capture the effects of soil water deficit on growth trajectories, the WSI-Gomp model was fit to 268

growth trajectories in drought and control conditions for each of the 349 accessions using a novel 269
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Figure 3. Capturing shoot growth trajectories using the WSI-Gomp model.
Observed (points) and predicted (broken line) mean shoot growth trajectories for each
experiment under control (A) and drought (B) conditions. For both A and B, Nelder-meader
optimization was used to fit the WSI-Gomp model to the mean shoot growth trajectories
for each experiment. (C) Average correlation between predicted trajectories and observed
PSA values. (D) Root mean squared error between predicted trajectories and observed PSA
values. For both C and D, the WSI-Gomp model was fit using the hierarchical Bayesian
model and predicted PSA values were compared at each time point with observed values for
each accession.
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Figure 4. Distribution and interpretation of pre-
dicted time of infection (A) The distribution of time of
inflection (TOI) values in control and drought conditions.
Correlation between time of inflection in control (B) and
drought (C) and empirical observations for projected shoot
area (PSA) and water use (WU). Spearman’s correlation
was performed using a three-day sliding window.

(Onogi et al., 2016). Model 272

parameter estimates for each accession 273

were used to predict growth trajectories 274

using observed WSI values. The 275

ability of the WSI-Gomp model to capture 276

these dynamic responses was assessed 277

by comparing predicted PSA values 278

and observed values at each time point 279

using two metrics: root mean squared error 280

(RMSE) and Pearson’s correlation. Overall, 281

the WSI-Gomp model provided a good fit 282

to the observed shoot growth trajectories 283

(Figure 3). The correlation between 284

observed and predicted PSA values ranged 285

from 0.41 to 0.87 in control. While the 286

correlation was slightly lower in drought 287

conditions and ranged from 0.52 to 0.75. 288

Correlation values were lowest for early 289

time points in both control and drought 290

conditions, suggesting that predictions 291

for these time point may be inaccurate. 292

However, at later time points there 293

was a high agreement between predicted 294

and observed values for PSA. Collectively, 295

these results suggest that the WSI-Gomp 296

captures shoot growth trajectories in 297

contrasting water regimes, however other 298

factors not accounted for in the growth 299

model also influence observed PSA values. 300

Leveraging the growth 301

model for biological inference 302

The advantage of the WSI-Gomp model 303

is that it allows PSA trajectories to be 304

modeled in response to declining soil water 305

content, and provides a straight-forward 306

way to calculate the predicted inflection 307

point under an observed WSI value. 308

With this in mind, we next sought to 309

determine what observable characteristics 310

influence the timing of this inflection 311

point in drought conditions. To this end, 312

we calculated the time of inflection (TOI) 313

for each plant in drought by determining 314

the earliest time in which the (t−WSIα) 315

component of the model became positive 316

(Supplemental File S2). As expected the 317

predicted TOI were lower in drought conditions compared to control, indicating that the inflection of the 318

growth curve occurs early under drought conditions compared to well-watered conditions (Figure 4A). 319
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TOI in drought-treated plants ranged from 8 - 16 days of imaging, while in control plants TOI values 320

ranged from 14 - 20. 321

To determine how observable phenotypes influenced TOI, the predicted TOI values were compared to 322

water use (WU), PSA, and the ratio of these values in drought to control (indicated by the subscript “dr” 323

meaning drought response) over the course of the experiment. Relationships were assessed using 324

Spearman’s correlation using a sliding window of three-days (Figure 4B,C). In drought conditions, we 325

observed a negative relationship between TOI in drought and PSA in both control and drought 326

conditions, indicating that larger plants tend to have earlier retardation of shoot growth rate (Figure 327

4B). In drought, this relationship became weaker as the soil water declined and drought became more 328

severe. This trend is likely because at these time points shoot growth in large plants were likely already 329

repressed by drought. Similar, albeit slightly stronger, negative correlations were observed between WU 330

in control conditions and TOI in drought (TOID). An interesting trend was observed for WU in drought 331

conditions and TOID. At early time points (e.g. days 0-14) a negative correlation was observed between 332

TOID and WU in drought. However, around day 15-18 this trend is reversed completely, with a positive 333

correlation observed between WU and TOID. As expected, TOID showed a positive relationship PSAdr 334

to drought (e.g. the ratio of PSA in drought to control), indicating that accessions with early inflection 335

points tend to show a larger reduction in PSA under drought relative to control. 336

Similar trends were observed in control conditions, however the values of the correlation coefficients 337

were different compared to drought (Figure 4C). A negative relationship was observed between TOI in 338

control (TOIC) and PSA in control, which is consistent with the relationship observed for TOID 339

conditions. However, TOIC and PSA in drought showed a very weak relationship, showing a slight 340

negative correlation during initial time points and a very weak positive relationship observed at later 341

time points. Consistent with control conditions, the relationship between WU in control and TOIC 342

showed a strong positive correlation. Moreover, the correlation between TOIC and WU in drought was 343

negative at early time points and positive at later time points which is similar to the trend observed 344

between TOID and WU. Although the interpretation of α and TOI is not very straightforward because 345

plants were grown in the absence of water stress, the observed correlation suggests these parameters may 346

have a similar interpretation as in drought conditions. 347

Genome-wide association provides insight into loci influencing model 348

parameters 349

Model parameter estimates for the WSI-Gomp model were obtained using a hierarchical Bayesian 350

framework, wherein the growth model is fit in the first level and in the second level an EBL approach is 351

used to predict marker effects from model parameters. Thus, the advantage of this approach is two-fold: 352

first, solutions for model parameters are obtained by leveraging the genomic relationships among the 353

accessions; secondly, the inferred marker effects can be used to identify genomic regions that influence 354

the magnitude of the model parameters. Thus this information can be leveraged to identify QTL and 355

potential candidate genes that may influence shoot growth trajectories in response to water deficit. To 356

this end, we sought to utilize the inferred marker effects to identify genomic regions that regulate model 357

parameters and influence dynamic shoot growth trajectories in response to water availability. The 358

absolute value of inferred marker effects are provided in the Manhattan plots in Figure 5 and 359

Supplemental File S3. Since obtaining p-values from Bayesian approaches is non-trivial, we report loci 360

and candidate genes for the top-20 SNPs ranked based on the absolute value of marker effects (|β|). 361

The model parameters r and α in both control and drought conditions exhibit a polygenic genetic 362

architecture. We identified several markers with small contributions to the parameter values. Although 363

the model parameters α and r showed a polygenic architecture, several notable genes were identified 364

within the regions defined by SNPs with relatively larger effects (Supplemental File S4). For instance, at 365

approximately 6.7 Mb on chromosome 1, a gene encoding an osmotin protein (OSM34) was found 366

approximately 75 Kb upstream of the top SNP associated with α in drought within this region. Osmotin 367

proteins play a role in plant biotic and abiotic stress responses, particularly drought stress (Narasimhan 368

et al., 2009; Sharma et al., 2013). Additionally, a membrane-bound protein involved in chilling tolerance, 369
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Figure 5. Genomic regions influencing model parameters. Predicted marker effects
are shown for each of the WSI-Gomp model parameters. Panels A-C show marker effects for
model parameters fit to growth trajectories in control conditions, while panels D-F show
marker effects for drought conditions. The absolute value of predicted marker effects (|β|) is
shown on the y-axis.
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COLD1, was found approximately 27 kB downstream of the SNP with the largest effect on chromosome 370

4 for α in drought (Ma et al., 2015). The presence of these two genes known to be involved in abiotic 371

stress responses warrants further investigation. 372

The parameter PSAmax showed a simpler genetic architecture in control and drought conditions. In 373

control conditions, one large QTL was identified on chromosome 4 with the SNP with the largest effect 374

located at approximately 31.4 Mb on chromosome 4. Within this region, a gene involved with the 375

regulation of polar auxin transport, Narrow Leaf1 (NAL1), was identified. Several studies have reported 376

that variants in the NAL 377
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Figure 6. Manhattan plots for time of inflection
(TOI) GWAS was conducted using TOI values in control
(A) and drought conditions (B). Each point indicates a SNP
marker and the y-axis shows the absolute value of predicted
marker effects (|β|).

gene have pleiotropic effects and 378

alter plant vascular patterning, spikelet 379

number, leaf size, root system architecture, 380

and shoot biomass (Qi et al., 2008; Fujita 381

et al., 2013). In drought conditions, several 382

QTL were identified for PSAmax, with 383

notable peaks located on chromosomes 384

1, 2, 4, and 8. The SNP with the largest 385

effect was located at approximately 21 386

Mb on chromosome 8. Within this region, 387

a gene known to regulate flowering time 388

under short-day conditions was identified, 389

GF14c (Purwestri et al., 2009). Moreover, 390

a second gene known to influence biomass 391

and seed size, OsMPS was identified on 392

chromosome 2 at approximately 24.5 Mb 393

(Schmidt et al., 2013). Since PSAmax is 394

a parameter that describes the maximum 395

biomass for each accession, the presence 396

of genes known to regulate flowering time 397

and biomass is promising and suggests that 398

this parameter is biologically meaningful. 399

Elucidating the genetic loci 400

influencing time of inflection 401

in contrasting water regimes 402

As mentioned above, an advantage 403

of the WSI-Gomp model is that it offers an 404

intuitive framework to determine the time 405

point at which an inflection in the growth curve occurs. Besides the parameters explicitly defined by the 406

model, the time of inflection can also be considered an additional phenotype that can be analyzed using 407

conventional genome-wide association mapping frameworks. With this in mind, we sought to identify 408

QTL that were associated with the time of inflection using a Bayesian whole-genome regression approach 409

(Supplemental File S3). Estimates for model parameters were combined with observed environmental 410

covariates to solve for the TOI for each accession in drought and control conditions. Marker associations 411

with TOI were assessed using a GWAS approach that accounted for the ordinal response variable, and 412

results are discussed in the context of the top-20 ranked SNPs based on |β| (Figure 6). 413

GWAS for TOI in control conditions showed that many SNPs have a small effect on the phenotype, 414

indicating a complex genetic architecture for time of inflection in control conditions (Figure 6A). 415

However for drought conditions, GWAS revealed two notable regions characterized by SNPs with 416

relatively larger effects (Figure 6B). The first peak was identified at approximately 27 Mb on 417

chromosome 2, while the second peak was located at 22.9 Mb on chromosome 11. Several notable genes 418

were identified within these regions (Supplemental File S4). For instance, on chromosome 2 a gene 419
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Figure 7. Comparing OsPIP1;1 expression and TOI
in drought between allelic groups at id2011870 (A)
OsPIP1;1 expression between minor (1) and major (-1)
allelic groups at SNP id2011870. The values plotted in
(A) are the residuals from a linear model that regressed
standardized gene expression levels for OsPIP1;1 on the
top four principle components of the kinship matrix for 87
diverse rice accessions. Thus, these values represent the
expression levels after correcting for population structure.
(B) Comparison between allelic groups for time of inflection
in drought conditions at SNP id2011870. The -1 corresponds
to accessions that are homozygous for the major allele,
0 for those that are heterozygous, and 1 for accessions
homozygous for the minor allele.

encoding an aquaporin protein, OsPIP1;1 was located approximately 674 bp from the second ranked 420

SNP within this region (id2011870). Work by Liu et al. (2013) showed that OsPIP1;1 functions as an 421

active water channel and plays important role in salt tolerance, root hydraulic conductivity, and seed 422

germination. The region on chromosome 11 harbored several genes known to be involved in disease 423

resistance, however no genes had clear role in drought and/or abiotic stress tolerance. Thus, further 424

studies are necessary to elucidate the role of this region in the drought responses. 425

To further explore the potential role of PIP1;1 in influencing TOI under drought condition, we 426

examined the expression of PIP1;1 in shoot tissues of 87 diverse rice accessions grown in an ideal, 427

controlled environment (Supplemental File S5). Gene expression levels were compared between major 428

and minor allelic groups (n = 74 and 13, respectively) using a linear model that accounted for 429

population structure. This analysis showed significantly lower expression in accessions within the minor 430

allelic group compared to the major allelic group (Figure 7). Moreover, accessions belonging to the 431

minor allelic group also exhibited significantly higher TOI values, indicating that these accessions showed 432

a later response to drought compared to those in the major allelic group. While additional studies are 433

necessary to characterize the role of PIP1;1 in influencing drought responses, large effect of this region 434

on TOI in drought together with the differences in gene expression observed between allelic group are an 435

encouraging direction for future studies. 436
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Discussion 437

Drought tolerance during vegetative growth stage is most simply defined as the ability to maintain 438

growth under water deficit. It is determined by the amount of water available to the plant and how 439

efficiently is the water used to gain biomass. In terminal drought environments, where a fixed amount of 440

water is available during the early season, the ability to maintain growth will be dependant on how well 441

the plant can manage these resources through out the season. Thus, when studying drought tolerance, 442

especially in terminal drought environments, it is important to jointly consider these factors. In the 443

current study, we imposed a severe drought stress by completely withholding water for a period of 20 444

days (or until pots reached 20% FC). The effects of this severe stress was apparent soon after 445

withholding water, as drought-stressed plants showed a significant reduction in shoot biomass after four 446

days compared to control plants. 447

Given the importance of accounting for water availability when modeling temporal shoot growth 448

trajectories, we developed a growth model that jointly models shoot biomass and soil water content. 449

While the model parameters themselves can be used to describe characteristics of the growth curve and 450

provide insight into the processes that influence shoot growth, the model can also be leveraged for 451

additional biological inferences. For instance, we used genotype-specific parameter estimates to 452

determine the point in which the growth rate begins to decline (i.e., TOI). Since the time values are 453

standardized to be on the same scale as the WSI, this metric can be interpreted in two ways: (1) the 454

time in which the growth rate begins to decline, or (2) the soil water content value that begins to repress 455

growth. Regardless of the interpretation, this approach provides a means to assess drought sensitivity 456

while accounting for variation in soil water content between plants. 457

Joint modeling suggests a tradeoff between vigor and drought tolerance 458

Time of inflection provided biological insight into the relationship between plant size or vigor, and 459

morphological responses to severe water deficit. Temporal correlation analyses between TOI and 460

observed morphological and physiological responses revealed that large, vigorous plants tend to have an 461

earlier decline in growth rate under severe drought conditions. Moreover, these plants tend to have high 462

water demands in control conditions, and quickly exhaust soil water resources. The link between early 463

vigor and drought responses has been studied extensively. Although some studies suggest that early 464

vigor is advantageous in drought-prone environments, these benefits are highly dependant on the type of 465

drought stress that is prevalent in these regions (Tardieu, 2011). A study by Kamoshita et al. (2004) 466

evaluated six rice accessions under short and prolonged drought and examined the relationship between 467

root system architecture, osmotic adjustment and biomass production. They found that highly vigorous 468

accessions quickly developed a dense root system and extracted water quickly, but were also more 469

sensitive to prolonged drought stress compared to low-vigor genotypes. However, these plants tended to 470

recover more quickly after rewatering compared to low-vigor accessions. A more recent study by 471

Rebolledo et al. (2012), found similar results and suggested that vigorous accessions also quickly exhaust 472

starch reserves under prolonged drought resulting in a greater decline in biomass production compared to 473

less vigorous accessions. Collectively, these studies support the observed negative correlation between 474

plant size and drought sensitivity (as assessed with TOI), and suggests there is a trade-off between 475

vigorous growth and the maintenance of growth in prolonged drought stress. Further studies are 476

necessary to determine whether these relationships can be decoupled, or to identify the optimal balance 477

between these two attributes. 478

Leveraging the genome-enabled growth model for candidate gene discovery 479

The hierarchical Bayesian framework developed by Onogi et al. (2016) provides a powerful approach to 480

improve the estimation of model parameters and to estimate the genomic contributions to the model 481

parameters. Since the model parameters are regressed on genome-wide SNP markers, this framework can 482

be used to calculate genetic values for model parameters thereby enabling genomic selection for certain 483

growth curve characteristics, and thus provides a means to identify important loci that influence trait 484
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trajectories (i.e., GWAS). While the initial study by Onogi et al. (2016) showed both applications of the 485

approach, their primary objective was genomic prediction. Here, we leveraged the genome-enabled 486

growth modeling approach to identify genomic regions that influence dynamic drought responses. 487

Many of the model parameters show a complex genetic architecture characterized by many loci with 488

small effects. However, several notable regions that exhibited relatively large effects were identified that 489

harbored potential candidate genes. For instance, two notable peaks were identified on chromosomes 1 490

and 4 for the parameter α in drought conditions. Both regions harbored candidate genes that have been 491

reported to regulate drought and/or osmotic stress responses in plants. The region on chromosome 4 492

harbored a gene that is known to regulate chilling tolerance in rice, COLD1 (Ma et al., 2015). COLD1 493

was shown to be involved with the Ca+2 signaling response to cold stress. In Arabidopsis, the COLD1 494

orthologs, GTG1 and GTG2, are membrane-bound ABA receptors (Pandey et al., 2006, 2009). However, 495

COLD1 exhibits GTPase activity that is absent in GTG1/2 (Ma et al., 2015). Thus, further studies are 496

necessary to determine whether COLD1 participates in drought responses. 497

In addition to the candidate genes associated by model parameters, whole-genome regression 498

performed with TOI in drought conditions revealed a potential role for additional genes in the genetic 499

regulation of the timing of growth responses to drought. An aquaporin gene, OsPIP1;1 was identified 500

within a prominent peak on chromosome 2 associated with TOI in drought conditions. Aquaporins are a 501

large family of proteins that were initially reported to act as water transporters, but have since been 502

shown to also transport CO2 and H2O2 (Uehlein et al., 2003; Dynowski et al., 2008; Bienert and 503

Chaumont, 2014; Maurel et al., 2015; Wang et al., 2016; Rodrigues et al., 2017). Aquaporins have 504

received considerable attention as a potential target to modify whole plant water transport and improve 505

water status during drought stress (Sadok and Sinclair, 2009; Devi et al., 2012; Choudhary and Sinclair, 506

2014; Schoppach et al., 2014; Grondin et al., 2016). Work by Grondin et al. (2016) showed that 507

aquaporins account for approximately 85% of root hydraulic conductivity in rice under drought stress. 508

While the role of OsPIP1;1 in drought tolerance remains to be elucidated, several studies have 509

provided encouraging evidence that OsPIP1;1 may play a role in mediating drought responses. First, 510

work by Liu et al. (2013) showed that OsPIP1;1 functions as a water channel and plays a role in seed 511

germination and salt tolerance. Second, Grondin et al. (2016) showed that the expression of PIP1;1 is 512

induced by drought stress. Finally, work by Wu et al. (2014) showed that OsPIP1;1 interacted with an 513

leucine-rich repeat receptor-like kinase gene that regulates drought tolerance in rice. Moreover, Liu et al. 514

(2013) showed that over-expression of OsPIP1;1 increased root hydraulic conductivity, indicating that 515

higher expression of OsPIP1;1 increases water flux. In the current study, we examined gene expression 516

levels for OsPIP1;1 in 87 diverse rice accessions and found that accessions exhibiting lower expression of 517

OsPIP1;1 also exhibited later retardation in growth rate compared to accessions with higher expressions. 518

Moreover, as stated above, we observed that plants with high water demands in control conditions tend 519

to exhaust soil-water resources in water-limited conditions leading to an early retardation in growth rate 520

(i.e. earier TOI). Although considerable work is necessary to establish a role of OsPIP1;1 in the 521

regulation of drought responses, the positive relationship between OsPIP1;1 expression and root 522

hydraulic conductivity as well as the observed relationship between OsPIP1;1 expression and TOI 523

provides an interesting foundation for future functional studies. 524

Concluding remarks 525

Improving drought tolerance in rice is a challenging objective. Efforts to improve drought tolerance are 526

hindered by the heterogenity in drought-prone environments, the breadth and complexity of traits 527

underlying drought adaptation, and the difficulty in characterizing large populations for these traits. 528

Recent advances in phenotyping technologies have provided an effective means to measure 529

morpho-physiological traits frequently throughout the growing season, and provide plant breeders and 530

geneticists with dense phenotypic data describing complex responses. However, these technological 531

advances must be coupled with frameworks that accommodate these multidimensional data sets, while 532

providing a means to leverage high density genotypic data to predict phenotypes and novel biological 533

inference. In this context, the genome-enabled growth model proposed in a significant advancement 534

towards addressing this need. The WSI-Gomp model provides a simple, biologically meaningful 535
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framework that can describe complex temporal responses using few parameters. Moreover, since 536

genome-wide markers are used to estimate model parameters, the inferred marker effects can be used to 537

study the genes that may contribute to these responses, estimate genetic values for model parameters for 538

known individuals, as well as predict the phenotypes for new, uncharacterized individuals. This study is 539

the first to leverage genome-enabled growth model for genomic inference in rice, and provides novel 540

insights into the basis of dynamic growth responses to drought stress. 541
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