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Abstract28

Recent advancements in phenomics coupled with increased output from sequencing tech-29

nologies can create the platform needed to rapidly increase abiotic stress tolerance of crops,30

which increasingly face productivity challenges due to climate change. In particular, the31

high-throughput phenotyping (HTP) enables researchers to generate large-scale data with32

temporal resolution. Recently, a random regression model (RRM) was used to model a33

longitudinal rice projected shoot area (PSA) dataset in an optimal growth environment.34

However, the utility of RRM is still unknown for phenotypic trajectories obtained from35

stress environments. Here, we sought to apply RRM to forecast the rice PSA in control36

and water-limited conditions under various longitudinal cross-validation scenarios. To this37

end, genomic Legendre polynomials and B-spline basis functions were used to capture PSA38

trajectories. Prediction accuracy declined slightly for the water-limited plants compared to39

control plants. Overall, RRM delivered reasonable prediction performance and yielded better40

prediction than the baseline multi-trait model. The difference between the results obtained41

using Legendre polynomials and that using B-splines was small; however, the former yielded42

a higher prediction accuracy. Prediction accuracy for forecasting the last five time points43

was highest when the entire trajectory from earlier growth stages was used to train the basis44

functions. Our results suggested that it was possible to decrease phenotyping frequency by45

only phenotyping every other day in order to reduce costs while minimizing the loss of pre-46

diction accuracy. This is the first study showing that RRM could be used to model changes47

in growth over time under abiotic stress conditions.48
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Background49

Plant biology has become a large-scale, data-rich field with the development of high-throughput50

technologies for genomics and phenomics. This has increased the feasibility of data driven ap-51

proaches to be applied to address the challenge of developing climate-resilient crops (Tester52

and Langridge, 2010). Crop responses to environmental changes are highly dynamic and53

have a strong temporal component. Such responses are also known as function-valued traits,54

for which means and covariances along the trajectory change continuously. Single time55

point measurements of phenotypes, however, only provide a snapshot, posing a series of56

challenges for research efforts aimed at understanding the ability of the plant to mount a57

tolerant response to an environmental constraint. Advancements in high-throughput phe-58

notyping (HTP) technologies have enabled the automated collection of measurements at59

high temporal resolution to produce high density image data that can capture a plethora of60

morphological and physiological measurements (Furbank and Tester, 2011). In particular,61

image-based phenotyping has been deemed a game changer because conventional phenotyp-62

ing is laborious and often involves destructive methods, precluding repeated sampling over63

time from the same individual (Ge et al., 2016). More importantly, these HTP systems offer64

greater potential to uncover the time-specific molecular events driven by important genes65

that have yet to be discovered in genome-wide association studies (GWAS) or to perform66

forecasting of future phenotypes in longitudinal genomic prediction. Thus, integrating these67

HTP data into quantitative genetics has the potential to increase the rate of genetic gain in68

crops. However, to take full advantage of such opportunities, novel statistical methods that69

can fully leverage time series HTP data need to be developed.70

Recently, Campbell et al. (2018) used a random regression model (RRM) to perform ge-71

nomic prediction for longitudinal HTP traits in controlled environments, such as greenhouses,72

using Legendre polynomials as the choice of a basis function to model dependencies across73

time. They also demonstrated that RRM could be used to achieve reasonable prediction74

accuracy in a cross-validation (CV) framework to forecast future phenotypes based on infor-75
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mation from earlier growth stages. RRM also enables the calculation of (co)variances and76

genetic values at any time between the beginning and end of the trajectory, even including77

time points that lack phenotypic information. This study showed that RRM could effectively78

describe the temporal dynamics of genetic signals by accounting for mean and covariance79

structures that are subjected to change over time (Kirkpatrick et al., 1990). However, the80

utility of RRM for plants under an abiotic stress environment is not explored. This is a crit-81

ical unknown as the crop productivity is greatly limited by environmental challenges such82

as drought and heat stress. In addition to the Legendre polynomials, spline functions can83

be used to describe the relationships between image-based phenomics and genomics data84

in longitudinal modeling (White et al., 1999). In particular, B-spline functions have been85

used to study a variety of traits, such as growth records, in animal breeding in terms of86

model goodness of fit using pedigree data (e.g., Meyer, 2005; Baldi et al., 2010); however, its87

application to HTP data in plants and its predictive ability from a CV perspective remains88

untested.89

Here we present our results from the performance of RRM applied to HTP temporal shoot90

biomass data in response to control and water-limited conditions using Legendre polynomi-91

als and spline functions. We selected drought stress because water limitation significantly92

impacts shoot growth (PSA) and is the major limitation for agricultural productivity and93

global food security.94
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Materials and Methods95

Plant materials and greenhouse conditions96

Three hundred fifty-seven accessions (n = 357) of the rice (O. Sativa) diversity panel 197

(RDP1) were selected for this study (Zhao et al., 2011). Seeds were surface sterilized with98

Thiram fungicide and germinated on moist paper towels in plastic boxes for three days. For99

each accession, three uniformly germinated seedlings were selected and transplanted to pots100

(150mm diameter x 200 mm height) filled with 2.5 kg of UC Mix. Square containers were101

placed below each pot to allow water to collect. The plants were grown in saturated soil on102

greenhouse benches prior to phenotyping.103

All lines were genotyped with 44,000 single nucleotide polymorphisms (SNPs) (Zhao104

et al., 2011). We used PLINK v1.9 software (Purcell et al., 2007) to remove SNPs with a105

call rate ≤ 0.95 and a minor allele frequency ≤ 0.05. Missing genotypes were imputed using106

Beagle software version 3.3.2 (Browning and Browning, 2007). Finally, 36,901 SNPs were107

retained for further analysis.108

Experimental design and drought treatment109

All experiments were conducted at the Plant Accelerator, Australian Plant Phenomics Fa-110

cility, at the University of Adelaide, SA, Australia. The panel was phenotyped for a digital111

metric representing shoot growth over 20 days of progressive drought using an image-based112

phenomics platform. The details of the experimental design are provided in Campbell et al.113

(2018). Briefly, each experiment consisted of 357 accessions from RDP1 and was repeated114

three times from February to April 2016. Two smart-houses were used for each experiment.115

In each smart-house, the accessions were distributed across 432 pots positioned across 24116

lanes. The experiments followed a partially replicated paired design, where plants of the117

same accession were grown adjacent to one another. In each experiment, 54 accessions were118

randomly selected and replicated twice.119
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Seven days after transplant (DAT), plants were thinned to one seedling per pot. Two120

layers of blue mesh were placed on top of the pots to reduce evaporation. The plants were121

loaded on to the imaging system and were watered to 90% field capacity (FC) DAT. On122

the 13 DAT, each pot was watered to 90% and was imaged to obtain an initial phenotype123

before the onset of drought. One plant from each pair was randomly selected for drought124

treatment. Water was withheld from drought plants until 25% FC, and after which water125

was applied to maintain 25% FC. For the duration of the experiment, the control plants were126

maintained at 100% FC.127

Statistical analysis of phenotypic data128

Visible images were processed, and digital features were extracted using the open-source129

Python library Image Harvest (Knecht et al., 2016). The sum of plant pixels from the130

two sides and one top view of red/green/blue (RGB) images was summed and used as a131

measure of shoot biomass. This digital phenotype is referred to as the projected shoot area132

(PSA) throughout this study. Several studies have reported a high correlation between PSA133

estimates and shoot biomass (Campbell et al., 2015; Golzarian et al., 2011; Knecht et al.,134

2016). Prior to downstream analyses, outlier plants at each time point were detected for135

each trait using the 1.5 interquartile range rule, and potential outliers were plotted along136

with their treatment counterparts and inspected visually. Plants that exhibited abnormal137

growth patterns were removed. In total, 221 plants were removed, leaving 2,586 plants for138

downstream analyses.139

Raw phenotypic measurements were adjusted for downstream genetic analyses prior to140

fitting RRM. Best linear unbiased estimators (BLUE) were computed for each accession by141

fitting experimental effect with three levels and replication within experiment for some of the142

accessions. We postulated that observations at each time point follow the additive genetic143

model (M ): y = Xβ + Zu + ε, where X and Z are n′ × f and n′ × n orders of incident144

matrices linking observations (n′) to systematic effects (f) and number of accessions (n),145
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respectively, y is an n′ × 1 vector of observations at each time point, β is a f × 1 vector of146

systematic effects, u is a n × 1 vector of BLUE for accessions, and ε is an n′ × 1 vector of147

residuals with V ar(ε) = Iσ2
ε , where I is an identity matrix. This was followed by fitting a148

RRM-based genomic prediction approach to predict phenotypes as described below.149

Random regression model150

We conducted quantitative genetics modeling of image-derived phenotypes using a RRM to

assess how well we could predict dynamic genetic signals. The RRM assumes that genetic ef-

fects and genetic variances are not constant and can vary continuously across the trajectory.

This leads to better prediction of time-dependent complex traits by estimating heterogeneous

single nucleotide polymorphism (SNP) effects across the trajectory. Specifically, we viewed

the trajectory of digital image-processed longitudinal records as an infinite-dimensional char-

acteristic that could be modeled by a smooth function (Meyer and Hill, 1997; Van der Werf

et al., 1998). Changes in PSA over time were modeled through Legendre polynomials and

B-splines of time at phenotyping. The general formula for the RRM was as follows:

PSAtjk = µ+

K1∑
k

φ(t)jkβk +

K2∑
k

φ(t)jkujk +

K3∑
k

φ(t)jkpjk + εtjk,

where φ(t)jk is a time covariate coefficient defined by a basis function evaluated at time151

point t belonging to the jth accession; βk is a kth fixed random regression coefficient for the152

population’s mean growth trajectory; ujk is a kth random regression coefficient associated153

with the additive genetic effects of the jth accession; K1 is the number of random regression154

parameters for fixed effect time trajectories; K2 and K3 are the number of random regression155

parameters for random effects; and pjk is a kth permanent environmental random regression156

coefficient for the accession j. The starting values of index k, and K1, K2, and K3 are defined157

separately for Legendre polynomials and B-splines below.158
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In the matrix notation, the above equation can be rewritten as

y = Xβ + Zu + Qpe + ε,

where β is a vector of solutions for fixed regressions; u is the additive genetic regression coeffi-

cients; pe is the permanent environmental random regression coefficients; ε is the residuals;

and Z and Q are corresponding incident matrices. We assumed a multivariate-Gaussian

distribution and the variance-covariance structure of

V ar


u

pe

e

 =


G
⊗

Cu 0 0

0 I
⊗

Cpe 0

0 0 R

 ,

where G = WscW
′
sc/p is the genomic relationship matrix of VanRaden (2008), where Wsc159

represents a centered and standardized marker matrix and p is the number of markers; Cu is160

the covariance function between the random regression coefficients for the additive genetic161

effect; ⊗ is the Kronecker product; Cpe is the covariance function between the random162

regression coefficients for the permanent environmental effects; and R = Inσ
2
e(t) is a diagonal163

matrix of heterogeneous residuals varying across times, where σ2
e is the residual variance.164

Choice of basis function165

The choice of the basis function to model the shape of the longitudinal measurements is166

critical. An ideal basis function has adequate potential to capture real patterns of changes167

in variance along a continuous scale (time) for a given trait (Meyer and Kirkpatrick, 2005).168

In this study, we used RRM with two basis functions, i.e., Legendre polynomials (Meyer,169

1998) and B-splines (Meyer, 2005), to describe line-specific curves for the PSA trajectory170

over the day of imaging.171

Legendre polynomials: Applying parametric shape functions for covariates of time is172
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challenging because these covariates tend to generate high correlations among trajectories173

(Mrode, 2014). For this reason, fitting Legendre polynomials of time at recording as covari-174

ables is a common choice to model growth curves because these polynomials greatly reduce175

the correlations between estimated random regression coefficients and make no prior assump-176

tions regarding the shape of the longitudinal curve. This function has been used widely in177

animal breeding for many years (e.g., Jamrozik and Schaeffer, 1997) and has recently been178

used in plant breeding as well (Sun et al., 2017; Campbell et al., 2018; Marchal et al., 2019).179

Suppose d is the order of fit or degree of the polynomial. Legendre polynomials evaluated at180

the standardized time points were computed as Φ = MΛ, where M is the tmax by d+ 1 ma-181

trix containing the polynomials of the standardized time covariate Mk+1 =
(

2(t−tmin)
tmax−tmin

)k
− 1182

and Λ is the d + 1 × d + 1 matrix of Legendre polynomial coefficients (Kirkpatrick et al.,183

1990). Here, tmin = 1 and tmax = 20 because PSA was measured for 20 days. We chose the184

same orders of polynomials for fixed, additive, and permanent environmental coefficients as185

previously described Schaeffer (2016). We compared linear (k = 0, · · · , K1 = K2 = K3 = 1)186

and quadratic (k = 0, · · · , K1 = K2 = K3 = 2) Legendre polynomials in this study. Thus,187

the numbers of regression coefficients were d+ 1 = 2 and d+ 1 = 3 for linear and quadratic188

Legendre polynomials, respectively.189

B-splines: Spline functions consist of individual segments of polynomials joined at specific190

points called knots. B-splines first require determination of the total number of knots K.191

Although a large number of knots will increase complexity, too few knots will decrease accu-192

racy. This basis function is reported to offer several advantages, including better numerical193

properties compared with polynomials, especially when there are high genetic variances at194

the extremes of the trajectory period, negative correlations between the most distant time195

point measurements, and a small number of records, particularly at the last stage of the196

trajectory (Meyer, 2005; Misztal, 2006). Here, we used equidistant knots, and the B-spline197

function was computed from Cox-de Boor’s recursion formula (De Boor, 2001). Given a198

preconsidered knot sequence of time t, the covariables for B-splines of degree d = 0 were199
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defined by assuming values of unity for all points in a given interval or zero otherwise. For200

the ith interval given by knots201

Bi,d=0(t) =


1 if Ti ≤ t ≤ Ti+1

0 otherwise.

where T is the threshold in time interval. According to De Boor (2001), the matrix Φ of202

B-spline for higher-order polynomials can be defined by recursion203

Bi,d(t) =
t− Ti

Ti+d − Ti
Bi,d−1(t) +

Ti+d+1 − t
Ti+d+1 −Ti+1

Bi+1,d−1(t).

This indicates that a B-spline of degree d is simply a function of B-splines of degree d − 1.204

Note that the number of random regression coefficients depends on the number of knots and205

order of polynomials for B-splines. In general, the number of regression coefficients is given206

by K = s + d − 1 (Meyer, 2005). In this study, we fitted linear B-splines with s = 3 or207

s = 4 knots to divide the time points into equally spaced intervals. The same number of208

knots was considered for fixed trajectories, additive genetic, and permanent environmental209

coefficients. Thus, the numbers of regression coefficients were three (k = 1, · · · , K1 = K2 =210

K3 = 3 + 1 − 1 = 3) and four (k = 1, · · · , K1 = K2 = K3 = 4 + 1 − 1 = 4) for s = 3 and211

s = 4 knots, respectively.212

Goodness of model fit213

The goodness of fit of RRM was assessed by computing the Akaike’s information crite-214

rion (AIC) (Akaike, 1974) and the Schwarz−Bayesian information criterion (BIC) (Schwarz215

et al., 1978). The best model was selected based on the largest AIC and BIC values after216

multiplying by -1/2. We used Wombat software to fit RMM in this study (Meyer, 2007).217
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Cross-validation scenarios218

As graphically represented in Figure 1, three different CV scenarios were designed to train the219

RRM. In all scenarios, prediction accuracy was evaluated by computing Pearson correlations220

between predicted genetic values and PSA in the testing set. Each of the CV scenarios is221

described below.222

CV1: In the first CV scenario (CV1), the whole data set was divided into two subsets, i.e.,223

training and testing sets, each including 179 and 178 accessions, respectively. All 20 time224

points in the training set were fit to the RRM using Legendre polynomials and B-splines,225

and we predicted phenotypic values of 20 time points for lines in the testing set. Random226

assignment of individuals into the training and testing sets was repeated 10 times. The227

equation for CV1 was set up in the following manner. The time-specific genetic value of the228

ith individual in the training set was computed as ĝttrn, i = Φtui, where ĝttrn, i is the estimated229

genetic value of the individual i at time t; Φt is the tth row vector of the tmax×K1 matrix Φ;230

and ui is the ith column vector of the K1 × n matrix u. Then, a vector of predicted genetic231

values of individuals in the testing set at time t was obtained as ĝttst = Gtst, trnG
−1
trn, trnĝ

t
trn,232

where Gtst, trn is the genomic relationship matrix between the testing and training set and233

G−1trn, trn is the inverse of genomic relationship matrix between the training set. Because CV1234

is not a forecasting task, a standard multi-trait model (MTM) was also fitted as a baseline235

model considering longitudinal traits as different traits (Henderson and Quaas, 1976). The236

BLUPF90 family of programs was used to fit MTM with 20 traits (Misztal et al., 2002).237

238

CV2: The second CV scenario (CV2) was related to forecasting future phenotypes from239

longitudinal traits at early time points. Individuals in the training set were used to fore-240

cast their yet-to-be observed PSA values at later time points from information available at241

earlier time points. The first quarter of the time points {t = 1, 2, 3, 4, 5} was used as242

the training set, and the remaining time points {t = 6, 7,· · · , 20} were predicted for each243

line in the training set. This was followed by sequentially increasing the number of time244
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points used to train the model so that in the last run, three quarters of the time points {t245

= 1, 2, · · · 15} were used in the training set to forecast phenotypes at the last quarter of246

time points {t = 16, 17, 18, 19, 20}. This CV scenario was designed to find a sufficient set247

of earlier time points to obtain reasonable longitudinal prediction accuracy and is known248

as walk forward validation. We set up the CV2 equation by first estimating the random249

regression coefficient matrix u using Φ1:t, which was computed from time point 1 to time250

point t. The prediction of future time points t′ (t + 1 ≤ t′ ≤ tmax) for an individual i was251

carried out by ĝt
′

= Φt′ui, where Φt′ is the t
′
th row vector of tmax − t by K + 1 matrix Φ;252

and ui is the ith column vector of the number of random regression coefficients by n matrix u.253

254

CV3: The third CV scenario (CV3) was designed to evaluate whether it was possible to255

reduce the phenotyping frequency while still maintaining a high prediction accuracy for the256

last quarter of observations. We used the last case in CV2 such that time points {t = 1,257

2, · · · , 15} were used for the training set to forecast the last quarter of observations {t =258

16, 17, 18, 19, 20}. We then reduced the number of time points used in the training set as259

follows: A, observations on odd days {t = 1, 3, · · · , 15} were used; B, observations on even260

days {t = 2, 4, · · · , 14} were used; C, keep one and delete two consecutive time points. In261

CV2 and CV3 scenarios, half of the individuals were randomly selected to fit the model, and262

the analysis was repeated 10 times. If the loss of prediction accuracy was minimal, it was263

possible to reduce the phenotyping cost. The equation for CV3 was set up in the same way264

as that for CV2.265

Data availability266

Genotypic data regarding the rice accessions can be downloaded from the rice diversity panel267

website (http://www.ricediversity.org/). Phenotypic data used herein are available in268

Supplementary File S1.269
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Results270

Assessing model fit271

Figures 2A and 2B show the box plots of the original PSA and BLUE for the phenotypic272

trajectories over the 20 days of imaging for control and water-limited conditions. The PSA273

for control and water-limited plants diverged significantly after 10 days of initiation of the274

drought treatment, and the accession level difference become apparent at later growth stages275

under control conditions. Supplementary Figure 1 shows the linear or quadratic forms of276

Legendre polynomials and three and four knot-based B-spline curves over 20 days of imaging.277

For Legendre polynomials, intercept, linear, and quadratic coefficients are represented in278

black, red, and green, respectively. For B-spline, knot 1, knot 2, and knot 3 are represented279

in black, red, and green, respectively.280

Table 1 summarizes the goodness of fits of RRM coupled with linear and quadratic Leg-281

endre polynomials and B-spline functions in control and water-limited conditions. For the282

Legendre polynomials, quadratic forms require more parameters to be estimated compared283

with linear forms. Similar to observation for B-splines, the presence of a greater number284

of knots suggested that there were more parameters to be estimated. Under control con-285

ditions, the best goodness of fit was obtained by linear Legendre polynomials, followed by286

linear B-splines with three knots, linear B-splines with four knots, and quadratic Legendre287

polynomials according to AIC scores. According to BIC scores, linear Legendre polynomials,288

followed by linear B-splines with three knots, quadratic Legendre polynomials, and linear289

B-splines with four knots. Under water-limited conditions, the best goodness of fit was given290

by linear Legendre polynomials, followed by linear B-splines with three knots, quadratic Leg-291

endre polynomials, and linear B-splines with four knots for both AIC and BIC scores. The292

number of parameters in the model varied from 26 to 40.293
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Cross-validation294

The results from CV1 are shown in Figure 3. This CV was designed to evaluate the accu-295

racy of predicting testing set individuals using all time points. Under control conditions,296

MTM performed relatively better than RRM up to day 3. The prediction accuracy of RRM297

increased subsequently and after the 10th day of imaging, the best prediction was given298

by linear Legendre, followed by quadratic Legendre, linear B-spline with three knots, and299

linear B-spine with four knots. Overall, RRM performed better than MTM, and linear Leg-300

endre was the best prediction machine throughout the growth stages. Under water-limited301

conditions, prediction accuracy was lower compared with those of control conditions. All302

RRM delivered higher prediction than MTM except for the first two time points. Although303

Legendre polynomials performed better than B-splines until day 7, the difference between304

these approaches became negligible afterward.305

Figures 4 and 5 show the accuracy of CV2 under control and water-limited conditions,306

respectively. This CV was designed to test how much information from the previous time307

points was required to achieve reasonable prediction accuracy at later growth stages. Under308

control conditions, we found that the best prediction for the last five time points was achieved309

when using all time point information up to the most recent (15/5 CV2 subscenario). This310

suggested that having more information from previous time points to train the model would311

result in higher prediction accuracy. Using the first five time points to train the model312

resulted in the worse prediction (5/15 CV2 subscenario). Thus, it is likely that the prediction313

accuracy in RRM declined because we attempted to estimate numerous parameters from only314

five time points. Legendre polynomials yielded better and more stable prediction than B-315

splines. We observed a similar trend under water-limited conditions; that is, using more316

previous time points to train the model resulted in higher prediction accuracy. However, the317

accuracy of prediction was unstable and decreased dramatically. There was no noticeable318

difference between the Legendre polynomials and B-splines in terms of performance.319

Figures 6 and 7 show the CV3 accuracy under control and water-limited conditions,320
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respectively. We designed this CV to evaluate whether it was possible to reduce phenotyping321

frequency and phenotyping costs without sacrificing prediction accuracy. Under control322

conditions, the prediction accuracy of CV3A, CV3B, and CV3C all decreased relative to the323

benchmark scenario in CV2, where all of the first 15 time points were used for the training324

set to forecast the last five time points. Although removing two consecutive time points did325

not improve performance (CV3C), the prediction accuracy from phenotyping every other326

day was still relatively high (CV3A and CV3B). In general, the linear B-splines performed327

the best, and differences between scenarios were minimal. Under water-limited conditions,328

we observed the same trend, but the prediction accuracy was more unstable and decreased329

relative to control conditions. The quadratic Legendre polynomials and B-splines with four330

knots did not perform well, possibly due to overfitting.331
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Discussion332

Image-based automated HTP technologies offer great potential for characterizing multi-333

faceted phenotypes at high temporal resolution. The use of HTP platforms plays a pivotal334

role in accelerating breeding efforts by providing the temporal resolution needed for cap-335

turing adaptive responses to environmental challenges, but the development of statistical336

methodologies to analyze image-based function-valued phenotypes has not kept pace with337

our ability to generate HTP data. Because phenomics and genomics landscapes for plants338

are constantly advancing, parallel efforts are required to develop tools for integrating di-339

verse genomic and phenomic datasets characterized by high temporal resolution in genetic340

analysis. Rice is one of the most drought sensitive cereal crops, resulting in substantial341

yield losses. With predictions for greater climatic shifts in the future and increasing com-342

petition for fresh water resources, research that leverages the full potential of genomics and343

phenomics is needed to elucidate the genetic and physiological basis of drought tolerance.344

However, there is currently a lack of information regarding the modeling of temporal HTP345

data.346

RRM identifies the effects of heterogeneous SNPs that transiently influence key traits347

and translates this to prediction of phenotypes. The main idea behind RRM is to describe348

subject-specific curves through basis functions (Meyer and Kirkpatrick, 2005). Although349

RRM has been successfully applied to pedigree-based animal breeding (Schaeffer and Jam-350

rozik, 2008), its utility is largely limited to evaluating goodness-of-fit for candidate models351

rather than CV-based prediction, and its integration into HTP data has not been reported.352

In this study, we coupled HTP data with high-density genomic infromation to carry out353

longitudinal prediction by capturing time-specific genetic signals. A diverse panel of rice354

accessions subjected to drought stress was used to illustrate the utility of the RRM for355

evaluating Legendre polynomials and B-splines of time at recording.356
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Longitudinal prediction357

We found that it was possible to model longitudinal PSA responses under water-limited358

conditions, albeit with decreased prediction accuracy compared with that of the control. We359

also placed particular emphasis on comparing two basis functions, i.e., Legendre polynomials360

and B-splines. To the best of our knowledge, the current study is the first to use a B-spline361

function to evaluate longitudinal prediction accuracy in the RRM applied to HTP data.362

Linear B-spline functions with s = 3 (two segments) or s = 4 knots (three segments)363

were used. B-splines have been reported to have better numerical properties (e.g., lower364

computational requirement and faster convergence) than Legendre polynomials because each365

coefficient of a function affects only a part of the trajectory and can be used to estimate366

genetic parameters more smoothly while still adequately capturing the features of dynamic367

data (Iwaisaki et al., 2005; Baldi et al., 2010).368

We observed differences in prediction accuracy across models during early growth stages;369

however, differences were incremental when predicting later growth stages in the CV1 sce-370

nario, in which the training and testing sets were partitioned based on individuals. Overall,371

linear Legendre polynomials performed the best and was clearly an advancement over the372

MTM. Prediction performance in CV2, in which the training and testing sets were parti-373

tioned according to growth stages rather individuals, showed that it was possible to predict374

future phenotypes from information available from earlier trajectories. Here, linear and375

quadratic Legendre polynomials produced the highest and most stable prediction accuracy376

under control conditions, whereas linear B-splines with three knots performed better in the377

water-limited environment. The final scenario (CV3) demonstrated that we could decrease378

the phenotyping frequency by only phenotyping every other day to reduce the phenotyping379

cost while minimizing the loss of prediction accuracy. In this case, linear B-spline with three380

knots performed relatively well.381

B-spline functions require two parameters (the position of the knots and the number382

of knots) to be tuned. The position of knots can be chosen based on a trajectory pattern383

18

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/632117doi: bioRxiv preprint first posted online May. 8, 2019; 

http://dx.doi.org/10.1101/632117
http://creativecommons.org/licenses/by/4.0/


such that more knots are placed for rapidly changing time points, whereas less knots are384

placed for time points with slow changes (Misztal, 2006). Thus, the position of knots should385

be carefully chosen if the number of phenotyped individuals varies substantially at each386

growth stage. We chose equidistant knots in the current study because all accessions were387

phenotyped on the same days during the trajectory. The number of knots determines the388

number of segments fitted. When more knots are specified, the model becomes more complex.389

Although we used s = 3 and s = 4 based on previous literature and a visual inspection of the390

observed phenotypic trajectory, further investigations are warranted to explore the impact391

of the number of knots on prediction accuracy. The performance of quadratic B-spline392

functions was not evaluated in the current study because we encountered convergence issues,393

possibly due to the small sample size. In general, we found that the advantages of B-splines394

in inferential tasks compared with Legendre polynomials were not shown clearly in terms395

of prediction. This is likely because PSA trajectories were relatively simple exponential or396

monotonically increasing trajectories without obvious inflection points, indicating that the397

potential of B-splines was not able to be fully exploited in the current study.398

Choice of parameters399

We also found that ranking the models according to AIC and BIC revealed only mild agree-400

ment with prediction performance evaluated by CV, suggesting that the RRM that gives401

the best goodness-of-fit is not guaranteed to deliver the best prediction and vice versa. The402

choice for the order of fit or the number of knots is arguably the most challenging modeling403

aspect in the RRM. In the majority of literature describing the RRM, this parameter is404

mainly chosen based on AIC, BIC, or the eigendecomposition of the covariance matrix. The405

major issue regarding this approach is that there is a tendency to simply pick a model with406

the highest order of fit or the largest number of knots. However, this study, suggests finding407

the best parameter in terms of prediction accuracy obtained from CV.408
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Future perspective409

We anticipate that the current work will guide us to conduct genomic selection of econom-410

ically important traits on the longitudinal scale for the purpose of breeding crops that are411

adaptable to new environments or to less favorable challenging climatic conditions. More-412

over, identifying genomic components over trajectories will provide information regarding413

the optimum time points to maximize cost-effective selection or to design a genome-assisted414

breeding program aiming to change the shape of the longitudinal response curve (Schaeffer,415

2004). Using our approach, we could evaluate all changes in plant biomass accumulation416

during the course of the experiment, in contrast to single time point analyses. Thus, we417

expect that RRM analysis will become the norm for modeling trajectories of function-valued418

HTP data because such approaches could be considered an extension of the widely used419

genomic best linear unbiased prediction model for time series data. Lastly, the utility of the420

RRM does not preclude its use in other applications. For example, the RRM offers a new421

avenue for performing longitudinal GWAS (e.g., Howard et al., 2015; Campbell et al., 2019)422

and genotype-by-environment interactions using the reaction norm (Arnold et al., 2019).423

In summary, an RRM using Legendre polynomial or spline functions could be an effective424

option for modeling trait trajectories of HTP data and may have potential applications in425

characterizing phenotypic plasticity in plants.426
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Table436

Table 1: Assessing goodness of fit for two random regression models (Legendre polynomials
and B-splines) used to predict projected shoot area measured over 20 time points.

Condition CF Log L −0.5 AIC −0.5 BIC p

CON

LEGL −32414.493 −32440.493 −32529.839 26
LEGQ −32412.550 −32444.550 −32554.512 32
BSPL3 −32408.862 −32440.862 −32550.824 32
BSPL4 −32404.142 −32444.142 −32581.592 40

WL

LEGL −26011.867 −26037.867 −26127.213 26
LEGQ −26009.267 −26041.267 −26151.229 32
BSPL3 −26006.205 −26038.205 −26148.167 32
BSPL4 −26005.537 −26045.537 −26182.986 40

CON: control environment; WL: water-limited environment; CF: covariance function;
LEGL: Legendre polynomial linear; LEGQ: Legendre polynomial quadratic; BSPL3: B-
spline linear with three knots; BSPL4: B-spline linear with four knots; Log L: log like-
lihood; AIC: Akaike information criterion; BIC: Bayesian information criterion; and p:
number of parameters.
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Figures437

Figure 1: Pictorial representation of three cross-validation schemes used for predicting longi-
tudinal projected shoot area (PSA) using a random regression model coupled with Legendre
polynomials and B-splines. The data set consisted of 357 lines. CV1: 179 lines were used as
the training set to predict PSA for the remaining 178 lines. Here, all 20 time points in the
training set were used to predict PSA at each of 20 time points for a new set of lines. CV2:
The data set was split into two longitudinal stages. The model was trained using the earlier
growth stages to predict PSA at the second part of growth stages. We increased the number
of time points used for training in a sequential manner. CV3: This was used to evaluate the
impact of phenotyping frequency in the training data set on longitudinal prediction accuracy.
Observations on odd days were used (CV3A), Observations on even days were used (CV3B),
and keep one and delete two consecutive time points (CV3C). TP: time points.
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Figure 2: A: Box plots of projected shoot area (PSA) over the 20 days of imaging in two
environments: controlled and water-limited conditions. B: Best linear unbiased estimators
over the 20 days of imaging in two environments: controlled and water-limited conditions.
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Figure 3: Prediction accuracy obtained from cross-validation 1 scenario. Total of 179 lines
were used as the training set to predict PSA for the remaining 178 lines. Here, all 20 time
points in the training set were used to predict PSA at each of 20 time points for a new set of
lines. LEGL: linear Legendre polynomials; LEGQ: quadratic Legendre polynomials; BSPL3:
linear B-splines with three knots; BSPL4: linear B-spline with four knots; MTM: multi-trait
model.
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Figure 4: Prediction accuracy of cross-validation scenario 2 in control conditions. Each line
depicts the different number of training and testing sets partitioning at the time point levels.
LEGL: linear Legendre polynomials; LEGQ: quadratic Legendre polynomials; BSPL3: linear
B-splines with three knots; BSPL4: linear B-spline with four knots.
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Figure 5: Prediction accuracy of cross-validation scenario 2 in water-limited conditions.
Each line depicts the different number of training and testing sets partitioning at the time
point levels. LEGL: linear Legendre polynomials; LEGQ: quadratic Legendre polynomials;
BSPL3: linear B-splines with three knots; BSPL4: linear B-spline with four knots.
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Figure 6: Prediction accuracy of cross-validation scenario 3 in control conditions. A: only
observations in the odd days were used; B: only observations in the even days were used; C:
keep one and delete two consecutive time points; CV2: use all available previous time points;
LEGL: linear Legendre polynomials; LEGQ: quadratic Legendre polynomials; BSPL3: linear
B-splines with three knots; BSPL4: linear B-spline with four knots.
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Figure 7: Prediction accuracy of cross-validation scenario 3 in water-limited conditions. A:
only observations in the odd days were used; B: only observations in the even days were
used; C: keep one and delete two consecutive time points; CV2: use all available previous
time points; LEGL: linear Legendre polynomials; LEGQ: quadratic Legendre polynomials;
BSPL3: linear B-splines with three knots; BSPL4: linear B-spline with four knots.
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31

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/632117doi: bioRxiv preprint first posted online May. 8, 2019; 

http://dx.doi.org/10.1101/632117
http://creativecommons.org/licenses/by/4.0/


L. E., and Sánchez, L. (2019). Deciphering hybrid larch reaction norms using random485

regression. G3: Genes, Genomes, Genetics, 9(1):21–32.486

Meyer, K. (1998). Estimating covariance functions for longitudinal data using a random487

regression model. Genetics Selection Evolution, 30(3):221.488

Meyer, K. (2005). Random regression analyses using B-splines to model growth of australian489

angus cattle. Genetics Selection Evolution, 37(6):473.490

Meyer, K. (2007). Wombat - A tool for mixed model analyses in quantitative genetics by re-491

stricted maximum likelihood (reml). Journal of Zhejiang University Science B, 8(11):815–492

821.493

Meyer, K. and Hill, W. B. (1997). Estimation of genetic and phenotypic covariance functions494

for longitudinal or repeated records by restricted maximum likelihood. Livest Prod Sci.,495

47:185–200.496

Meyer, K. and Kirkpatrick, M. (2005). Up hill, down dale: quantitative genetics of cur-497

vaceous traits. Philosophical Transactions of the Royal Society B: Biological Sciences,498

360(1459):1443–1455.499

Misztal, I. (2006). Properties of random regression models using linear splines. Journal of500

Animal Breeding and Genetics, 123(2):74–80.501

Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., Lee, D., et al. (2002). Blupf90502

and related programs (bgf90). In Proceedings of the 7th World Congress on Genetics503

Applied to Livestock Production, volume 33, pages 743–744.504

Mrode, R. A. (2014). Linear models for the prediction of animal breeding values. CABI.505

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller,506

J., Sklar, P., De Bakker, P. I., Daly, M. J., et al. (2007). Plink: a tool set for whole-507

32

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/632117doi: bioRxiv preprint first posted online May. 8, 2019; 

http://dx.doi.org/10.1101/632117
http://creativecommons.org/licenses/by/4.0/


genome association and population-based linkage analyses. The American Journal of508

Human Genetics, 81(3):559–575.509

Schaeffer, L. (2016). Random regression models. Available in http://animalbiosciences.510

uoguelph. ca/˜ lrs/BOOKS/rrmbook. pdf.511

Schaeffer, L. and Jamrozik, J. (2008). Random regression models: a longitudinal perspective.512

Journal of Animal Breeding and Genetics, 125(3):145–146.513

Schaeffer, L. R. (2004). Application of random regression models in animal breeding. Livest514

Prod Sci., 86:35–45.515

Schwarz, G. et al. (1978). Estimating the dimension of a model. The Annals of Statistics,516

6(2):461–464.517

Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J., Jannink, J.-L., and Sorrells, M. E.518

(2017). Multitrait, random regression, or simple repeatability model in high-throughput519

phenotyping data improve genomic prediction for wheat grain yield. The Plant Genome,520

10(2).521

Tester, M. and Langridge, P. (2010). Breeding technologies to increase crop production in a522

changing world. Science, 327:818–822.523

Van der Werf, J., Goddard, M., and Meyer, K. (1998). The use of covariance functions and524

random regressions for genetic evaluation of milk production based on test day records.525

Journal of Dairy Science, 81(12):3300–3308.526

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of527

Dairy Science, 91(11):4414–4423.528

White, I., Thompson, R., and Brotherstone, S. (1999). Genetic and environmental smoothing529

of lactation curves with cubic splines. Journal of Dairy Science, 82(3):632–638.530

33

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/632117doi: bioRxiv preprint first posted online May. 8, 2019; 

http://dx.doi.org/10.1101/632117
http://creativecommons.org/licenses/by/4.0/


Zhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton,531

G. J., Islam, M. R., Reynolds, A., Mezey, J., et al. (2011). Genome-wide association532

mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature533

Communications, 2:467.534

34

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/632117doi: bioRxiv preprint first posted online May. 8, 2019; 

http://dx.doi.org/10.1101/632117
http://creativecommons.org/licenses/by/4.0/

