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Abstract31

Genome-wide association mapping identifies quantitative trait loci (QTL) that influence the32

mean differences between the marker genotypes for a given trait. While most loci influence33

the mean value of a trait, certain loci, known as variance heterogeneity QTL (vQTL) de-34

termine the variability of the trait instead of the mean trait value (mQTL). Identification35

of genetic variants that affect variance heterogeneity can provide insights into the biologi-36

cal mechanisms that control variation, phenotypic plasticity, and epistasis. In the present37

study, we performed variance heterogeneity genome-wide association studies (vGWAS) for38

grain cadmium (Cd) concentration using a hard-red winter wheat (Triticum aestivum L.) as-39

sociation mapping panel. We used double generalized linear model (DGLM) and hierarchical40

generalized linear model (HGLM) to identify vQTL associated with grain Cd. We identi-41

fied novel vQTL regions on chromosomes 2A and 2B that contribute to the Cd variation42

and loci that affect both mean and variance heterogeneity (mvQTL) on chromosome 5A. In43

addition, our results demonstrated the presence of epistatic interactions between vQTL and44

between vQTL and mvQTL, which could explain variance heterogeneity. Several candidate45

genes that were associated with the regulation of mineral content in plants were identified;46

these included genes encoding a homeobox-leucine zipper family protein, ABC transporter,47

MADS-box transcription factor, plant peroxidase, and glycosyltransferase. Overall, we pro-48

vide novel insights into the genetic architecture of grain Cd concentration and report the49

first application of vGWAS in wheat. Moreover, our findings indicated that epistasis is an50

important mechanism underlying natural variation for grain Cd concentration.51
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Background52

Genome-wide association studies (GWAS) are routinely conducted to study the genetic basis53

of important traits in crops. GWAS use populations of related individuals and link pheno-54

typic variation with dense genetic marker data using a linear modeling framework (Xiao55

et al., 2017). Standard GWAS approaches seek to identify trait-marker associations that in-56

fluence the mean phenotypic values. However, differences in the variance between genotypes57

are also under genetic control (Shen et al., 2012). As a result, several recent studies have58

identified loci associated with differences in variance between genotypes (Corty and Valdar,59

2018; Corty et al., 2018; Cao et al., 2014). Such genetic variants that affect the variance60

heterogeneity of traits have been referred to as variance heterogeneity quantitative trait loci61

(vQTL).62

Variance heterogeneity-based genome-wide association studies (vGWAS) have emerged63

as a new approach for identifying and mapping vQTL. vQTL contribute to variability, which64

is undetected through standard statistical mapping (bi-parental or association) procedures65

(Forsberg and Carlborg, 2017; Rönneg̊ard and Valdar, 2011; Shen et al., 2012). It has been66

argued that variance heterogeneity between genotypes can be partially explained by epistasis67

or gene-by-environment interactions (Brown et al., 2014; Forsberg and Carlborg, 2017; Young68

et al., 2018). Thus, vQTL can provide insights into epistasis or phenotypic plasticity (Young69

et al., 2018; Nelson et al., 2013). Moreover, these vGWAS frameworks can serve as tractable70

approaches to reduce the search space when assessing epistasis among markers (Brown et al.,71

2014; Wei et al., 2016).72

Numerous studies have reported vQTL associated with diverse phenotypes, including73

the tendency to left-right turning and bristles (Mackay and Lyman, 2005) and locomotor74

handedness (Ayroles et al., 2015) in Drosophila; coat color (Nachman et al., 2003), circadian75

activity, and exploratory behavior (Corty et al., 2018) in mice; thermotolerance (Queitsch76

et al., 2002), flowering time (Salom et al., 2011), and molybdenum concentration (Forsberg77

et al., 2015; Shen et al., 2012) in Arabidopsis ; litter size in swine (Sell-Kubiak et al., 2015);78
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urinary calcium excretion in rats (Perry et al., 2012); and body mass index (Yang et al.,79

2012; Young et al., 2018), sero-negative rheumatoid arthritis (Wei et al., 2017), psoriasis80

(Wei et al., 2018), and serum urate (Topless et al., 2015) in humans. In plants, vGWAS have81

been limited to few species, including Arabidopsis (Forsberg et al., 2015; Shen et al., 2012)82

and maize (Kusmec et al., 2017). To date, vGWAS have been very limited.83

Methodologically, vQTL have been detected by performing statistical tests searching for84

unequal variance for a quantitative trait between the marker genotypes (Dumitrascu et al.,85

2018). The most common statistical tests used to identify vQTL include Levene’s test (Par86

et al., 2010), Brown-Forysthe test (Brown and Forsythe, 1974), squared residual value linear87

modeling (Struchalin et al., 2012), and correlation least squares test (Brown et al., 2014).88

However, these methods have certain drawbacks when applied to genetic data. For example,89

Levene’s and Brown-Forsythe tests are sensitive to deviations from normality and have an90

inherent inability to model continuous covariates (Rönneg̊ard and Valdar, 2012; Dumitrascu91

et al., 2018).92

Double generalized linear model (DGLM) has emerged as an alternative approach to93

model the variance heterogeneity for genetic studies (Rönneg̊ard and Valdar, 2011). In94

DGLM, sample means and residuals are modelled jointly. Here, generalized linear models95

(GLM) are fitted by including only the fixed effects in the linear predictor(s) for the mean and96

dispersion. It is important to correct for population structure, which can otherwise lead to97

spurious associations in GWAS (Patterson et al., 2006). In DGLM, population structure can98

be corrected by incorporating the first few principal components of a genomic relationship99

matrix (GRM) (Patterson et al., 2006) as fixed covariates in the model. However, the first100

few principal components may not be sufficient to account for complex population structure101

or family relatedness (Hoffman, 2013; Sul et al., 2018). Alternatively, we can fit linear mixed102

models (LMM) to strictly correct for population structure, where the whole GRM can be103

modeled as random effects. Hierarchical generalized linear model (HGLM) has been proposed104

as an extension of the DGLM to model random effects in the mean component (Rönneg̊ard105
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and Valdar, 2012; Tan et al., 2014). In HGLM, the GRM can be used to model correlated106

random effects and account for population structure.107

We applied a vGWAS framework to examine the genetic architecture of Cd accumulation108

in wheat grains in the current study. Cd is a heavy metal that is highly toxic to human health109

(Menke et al., 2008). Identifying genetic variants that control low-grain Cd concentration110

in wheat is necessary to understand the basis for phenotypic variation in grain Cd and can111

help accelerate the development of low Cd wheat varieties. A recent study assessed natural112

variation in grain Cd in bread wheat by conducting GWAS (Guttieri et al., 2015). However,113

only a fraction of phenotypic variation could be explained by the top marker associations,114

indicating that grain Cd concentration is a complex trait that is influenced by multiple loci115

and/or loci with non-additive effects (Guttieri et al., 2015). Given the genetic complexity of116

Cd in wheat, we hypothesized that variation in grain Cd concentration in wheat is influenced117

by vQTL that are likely to be involved in epistatic interactions; this would allow us to capture118

additional variation that are not accounted for in a standard GWAS approach.119

In this study, we sought to provide additional insights into natural variation in grain Cd120

concentration in bread wheat through vGWAS using a publicly available hard-red winter121

wheat association mapping panel (https://triticeaetoolbox.org/wheat/). To achieve122

this, we used DGLM and HGLM to perform vGWAS. Previously, Guttieri et al. (2015)123

conducted standard GWAS using this association panel and identified a single mean effect124

QTL (mQTL) for grain Cd concentration on chromosome 5A. In addition, we aimed to125

understand the basis of vQTL by searching for pairwise epistatic interactions among vQTL126

and mQTL and add biological context to the identified vQTL regions by unraveling candidate127

genes within these genomic intervals. To our knowledge, the present study is the first to128

conduct vGWAS and identify vQTL associated with grain Cd concentration in wheat.129
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Materials and Methods130

Plant materials and genotyping131

We analyzed a publicly available dataset comprising of phenotypes for grain mineral con-132

centration for n = 299 genotyped hard-red winter wheat accessions. The details of the133

study are discussed in Guttieri et al. (2015), and access to the data is available at http:134

//triticeaetoolbox.org/wheat/. Here, we focused on grain Cd concentration (mg/kg)135

averaged across two years in one location (Oklahoma, USA). We combine the data across136

years due to non-significant genotype x year interactionGuttieri et al. (2015). The associ-137

ation panel was genotyped using a 90K iSelect Infinium array (Wang et al., 2014b). We138

used a filtered marker data set consisting of single nucleotide polymorphism (SNP) markers139

from the 90K iSelect Infinium array as described by Guttieri et al. (2015). All the SNP140

markers were physically anchored on the new reference genome of hexaploid wheat RefSeq141

v1.0 (Appels et al., 2018).142

Statistical modeling143

We used DGLM and HGLM to detect VQTL in the current study. The description of models144

used is given below.145

DGLM146

DGLM is a parametric approach that can be used to jointly model the mean and dispersion147

using a GLM framework (Smyth, 1989). The DGLM model works iteratively by first fitting148

a linear model to estimate the mean effects (mQTL). The squared residuals are used to149

estimate the dispersion effects (vQTL) using GLM with a gamma-distributed response and150

the log link function. This process is cycled until convergence. Here, we extended the DGLM151

model to marker-based association analysis according to Rönneg̊ard and Valdar (2011). The152
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mean part of DGLM was as follows:153

y = 1µm + Xβ + Sjamj + ε, (1)

where y is the Cd concentration (mg/kg); 1 is the column vector of 1; µm is the intercept; X

is n×4 covariate matrix of the top four principle components (PCs) obtained by performing

principal component analysis (PCA) of marker data using the SNPRelate R package (Zheng

et al., 2012); β is the regression coefficients for the covariates; Sj ∈(0,2) is the vector

containing the number of reference allele at the marker j, a
mj

is the effect size or allele

substitution effect of the jth marker; and ε is the residual. We assumed

ε ∼ N(0, Iσ2
ε)

log(σ2
ε) = 1µv + Sjavj,

where I is the identity matrix; σ2
ε is the residual variance; and 1µv and av are the intercept154

and marker regression coefficients for the variance part of the model, respectively. While we155

fit separate effects for the mean using a standard linear model and for the variance using156

the squared residuals in gamma distributed GLM with a log link function, this is equivalent157

to modeling y ∼ N(1µ + Xβ + Samj, exp(1µv + Sjavj) or ε ∼ N(0, exp(1µv + Sjavj)) in158

equation (1).159

The DGLM model was fitted using the dglm package (https://cran.r-project.org/

web/packages/dglm/index.html) in R statistical computing environment (R Core Team,

2018). SNP markers were fitted one by one, and for each marker, the effect sizes, standard

errors, and p-values were obtained for the mean and dispersion components. To account for

multiple testing, we determined the effective number of independent tests (Meff) using the

method described by Li and Ji (2005). Subsequently, a genome-wide significance threshold
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level (P < 1.44× 10−5) was determined using the following formula:

αp = 1− (1− αe)
1

Meff ,

where αp is the genome-wide significance threshold level, and αe is the desired level of160

significance (0.05).161

HGLM162

One approach to correct for population structure is to perform PCA of the marker matrix,

extract the first few principal components, and fit them as covariates to correct for population

structure, as in the DGLM approach. However, this approach captures some but not all

population structure (Hoffman, 2013). To explicitly account for population structure and

kinship in GWAS, LMM have been proposed as alternative methods that allow the genetic

relationships between individuals to be modeled as random effects. To perform vGWAS

in the LMM framework and to identify genome-wide vQTL, we used a HGLM approach.

HGLM (Lee and Nelder, 1996) is a class of GLM and is a direct extension of the DGLM that

allows joint modelling of the mean and dispersion parts and introduces random effects as a

linear predictor for the mean (Lee et al., 2006; Rönneg̊ard and Carlborg, 2007). The mean

part of HGLM was given as follows:

y = 1µ+ Sjamj + Zu + ε,

assuming that

u ∼ N(0,Gσ2
u),

where Z is the incident matrix of random effects; u is the vector of random effects with163

Var(u) = Gσ2
u; G is the GRM of VanRaden (2008); and σ2

u is the additive genetic variance.164

A log link function is used for the residual variance given by exp(Sj, avj), which is equivalent165
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to modeling y|amj,u, avj ∼ N(Sjamj,Zu, exp(Sj, avj)).166

We fitted HGLM using the hglm R package (Rönneg̊ard et al., 2010). We reformulated167

the term Zu as Z∗u∗, where u∗ ∼ N(0, Iσ2
u); Z∗ = Z0L; L is the Cholesky factorization of the168

G matrix; and Z0 is the identity matrix (Rönneg̊ard and Carlborg, 2007). Markers treated169

as fixed effects were fitted one by one, and for each marker, the effect sizes, standard errors,170

and p-values were obtained for the mean and dispersion components. The genome-wide171

significance threshold level was derived as described in the DGLM analysis.172

Epistasis analysis173

We investigated the extent of epistasis that was manifested through variance heterogeneity.

All the possible pairwise interaction analyses for markers that were associated with grain Cd

concentration were performed using the following two markers at a time epistatic model:

y = 1µ+ Xβ + Sjaj + Skak + (SjSk)vjk + ε,

where y is the vector of Cd concentration (mg/kg); X is the incident matrix for the first174

four PCs; β is the regression coefficients for the PCs; Sj and Sk are SNP codes for the jth175

and kth markers, respectively; aj and ak are the additive effects of the markers j and k,176

respectively; and vjk is the additive × additive epistatic effect of the j th and kth marker.177

We used Bonferroni correction to account for the multiple testing.178

Candidate gene identification179

We performed candidate gene identification for the SNP markers associated with variance180

heterogeneity. We used the Ensembl Plants browser (Bolser et al., 2017) to retrieve the candi-181

date genes and functional annotations (http://plants.ensembl.org/Triticum_aestivum/182

Info/Index) and the International Wheat Genome Sequencing Consortium (IWGSC) Ref-183

Seq v1.0 annotations (Appels et al., 2018) available at https://wheat-urgi.versailles.184
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inra.fr/Seq-Repository/Annotations. For candidate gene analysis, we first determined185

the positions of significant SNP markers, and the interval was defined as the distance between186

the lowest and highest markers based on the position of SNPs. For example, if the position187

of the lowest SNP and highest SNP was 715,333,165 bp and 717,146,211 bp in the vQTL re-188

gion on chromosome 2A, we defined 2A as the 715,333,165-717,146,211 interval for candidate189

gene identification. After defining the interval for the 2A (2A: 715,333,165-717,146,211) and190

2B (2B: 691,780,716- 701,097,263 bp) regions, we explored the intervals using the Ensembl191

Plants browser and extracted the Gene IDs within these intervals. The Gene IDs within192

the defined interval on chromosomes 2A and 2B were analyzed using the IWGSC RefSeq193

v.1.0 (Appels et al., 2018) integrated genome annotations to obtain the predicted genes and194

functional annotations.195

Data availability196

The wheat phenotypic and genotypic data can be downloaded from http://triticeaetoolbox.197

org/wheat/ and also available on the GitHub repository https://github.com/whussain2/198

vGWAS. The R code used for the analysis is available on the GitHub repository https:199

//github.com/whussain2/vGWAS. File S1 contains Supplementary Table S1 and Figures200

S1-S4. File S2 contains a list of all candidate genes and annotations associated with the201

vQTL on chromosomes 2A and 2B.202
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Results203

Variance heterogeneity GWAS provide additional insights into nat-204

ural variation in grain Cd205

Although grain Cd concentration is a highly heritable trait, recent GWAS revealed that206

significant loci can only explain a fraction of the variation for this trait (Guttieri et al.,207

2015). Thus, to further examine natural variation for grain Cd concentrations in wheat,208

we performed vGWAS using genotypic and phenotypic data for 299 diverse hard-red winter209

wheat accessions (Guttieri et al., 2015). The DGLM and HGLM approaches were used to210

detect vQTL while controlling for population structure.211

First, we conducted the DGLM-based analysis to each SNP and calculated the P -values212

for mean and dispersion effects. We classified the QTL into the following categories: mQTL,213

which contributes to difference in the means between marker genotypes; vQTL, which in-214

fluences the variability between the genotypes; and mean-variance QTL (mvQTL), which215

contributes to differences in both the mean and variance between the genotypes.216

Based on the DGLM, we identified two vQTL associated with the variance heterogeneity217

of Cd concentration. One vQTL on 2A contained four SNP markers, and one vQTL on 2B218

contained 17 SNP markers (Figure 1 and Supplementary File S1: Table S1). The four SNP219

markers associated with the vQTL region on the chromosome 2A region spanned the physical220

distance of 1.81 Mb; all SNP markers were located within the 0 kb linkage disequilibrium221

(LD) block (Supplementary File S1: Figure S1). The vQTL region on 2B associated with 17222

SNP markers spanned the physical distance of 9.32 Mb, and the SNP markers were located223

within four LD blocks of sizes 0, 1, 1, and 204 kb (Supplementary File S1: Figure S2).224

In addition, we identified a single mvQTL (containing four SNP markers) associated225

with both mean and variance heterogeneity on chromosome 5A (Figure 1 and Table S1).226

The markers associated with mvQTL on chromosome 5A were identical to those obtained in227

the original GWAS analysis according to Guttieri et al. (2015), indicating that this region228
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affects both the mean and the variance heterogeneity (Supplementary File S1: Figure S1).229

Moreover, these results showed that DGLM serves as an accurate framework to jointly detect230

mean and variance QTL and provides additional insights into phenotypic variation that231

would otherwise not be captured by standard GWAS.232

Considering that population stratification was detected using the association panel used233

in this study, we next used HGLM, which captures population substructure between indi-234

viduals using the G matrix. This model extends the DGLM framework and allows a random235

effect to fit the mean regression component. vGWAS based on HGLM revealed the same re-236

sults as those obtained using DGLM and showed identical vQTL on chromosomes 2A and 2B237

and mvQTL on chromosome 5A associated with variance heterogeneity of Cd concentration.238

Variance heterogeneity loci can be partially explained by epistasis239

Although the interpretation of vQTL results remains controversial and is dependent on the240

experimental design and the parameterization of the mean component of the model, one241

possible explanation for the vQTL is the presence of epistatic interactions between marker242

genotypes (Forsberg and Carlborg, 2017). Thus, we next sought to investigate whether the243

vQTL identified in this study are involved in epistatic interactions. We investigated all sig-244

nificant markers (25 markers) associated with mvQTL on chromosome 5A and vQTL on245

chromosomes 2A and 2B and explored all possible pairwise additive × additive epistatic246

interactions. Interestingly, we detected significant additive × additive interactions between247

the markers (Figure 2). The interaction was more evident between mvQTL on chromosome248

5A and vQTL on chromosomes 2A and 2B. Specifically, all the markers associated with the249

5A mvQTL region revealed highly significant interactions with all the markers associated250

with the 2A and 2B vQTL regions. Interactions between vQTL on 2A and 2B chromosomes251

were also observed; however, the interactions were less evident, and only a few markers252

within these regions showed statistically significant interactions. Taken together, these re-253

sults suggested that the vQTL and mvQTL may be manifested because of pairwise epistatic254
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interactions.255

Candidate gene identification256

We investigated the biological basis of the vQTL identified in this study by identifying vQTL257

intervals for putative candidate genes. We placed particular emphasis on genes that have258

annotations related to regulating mineral concentration in wheat and other plant species.259

For the vQTL on chromosome 2A, 38 candidate genes were identified in the 1.18 Mb interval260

that is physically located between 715,333,165 to 717,146,211 bp using IWGSC RefSeq v.1.0261

(Supplementary File S2). For the vQTL on chromosome 2B, 108 candidate genes were pre-262

dicted in the 9.32 Mb interval physically located from 691,780,716 to 701,097,263 bp based263

on IWGSC RefSeq v1.0. Based on the annotations for the identified candidate genes, many264

of the genes encoded homeobox-leucine zipper family protein, ABC transporter, MADS-box265

transcription factor, plant peroxidase, and glycosyltransferase, which have been associated266

with the genetic regulation of minerals in plants (Whitt et al., 2018). A shortlist of potential267

candidate genes is provided in Table 1, and the complete list can be found in Supplementary268

File S2. The results clearly showed that the two genomic regions associated with variance269

heterogeneity on chromosomes 2A and 2B harbor numerous putative candidate genes that270

potentially play significant roles in the genetic regulation of grain Cd concentration in wheat.271

However, we contend that further investigation of these regions using dense markers and in-272

creased sample size is necessary to fine-map the QTL and identify the causal genes underlying273

variation in these loci.274
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Discussion275

In the present study, we explored the genetic variants affecting variance heterogeneity of276

Cd. Given the complexity of genetic regulation of Cd in wheat (Guttieri et al., 2015) and277

the influence of epistatic interactions, we anticipated that partial genetic regulation of Cd278

in wheat can be detected using methods that have been developed to identify vQTL. As279

reported by Rönneg̊ard and Valdar (2011), a potential explanation for variance-controlling280

QTL is epistatic interactions that are unspecified in the model. Herein, we utilized two281

approaches, namely, DGLM and HGLM, to detect vQTL and mvQTL associated with grain282

Cd concentration in wheat.283

The DGLM framework is a powerful approach for vGWAS analysis (Hulse and Cai, 2013).284

However, in DGLM, GLM is fitted by including only the fixed effects in the linear predictor285

of mean and dispersion. Therefore, by using the DGLM approach, population structure can286

only be accounted for by using the first few PCs obtained from the SNP matrix; however,287

this may not completely account for complex population structure and family relationships288

(Price et al., 2010). We hypothesized that the use of random effects to model the mean289

component can better account for population structure and reduce spurious associations. In290

this approach, a random additive genetic effect is introduced to the mean component of the291

model that accounts for population structure and cryptic relatedness between accessions.292

Therefore, we performed vGWAS analysis using HGLM. Interestingly, both DGLM and293

HGLM approaches were effective in identifying the genetic variants controlling variability of294

Cd, suggesting that the loci detected with the DGLM approach are likely to be true QTL295

rather than artifacts from population structure. The impact of population structure on the296

power of DGLM and HGLM remains to be explored; further examination is warranted.297

In the literature, it has been argued that variance heterogeneity can also arise by a simple298

mean–variance relationship, which does not have biological significance (Young et al., 2018).299

To rule out the role of the mean-variance function in generating variance heterogeneity, we300

plotted the estimated effects of the top three significant associated markers at the alternate301
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genotypes and observed that the means of all the markers were the same (Figure 3), indi-302

cating that the effect of SNP on variance heterogeneity was not due to the consequences of303

mean–variance function but likely due to the genetic effects (Yang et al., 2012).304

In QTL studies, variance heterogeneity arises because of various underlying mechanisms,305

such as epistatic interactions (Struchalin et al., 2012; Shen et al., 2012; Nelson et al., 2013).306

Epistasis gives rise to variance heterogeneity when the different allele combinations at one307

locus change the effect of the other loci in the genome, as shown in one pair of interacting308

markers (Figure 4). Hence, identifying the loci affecting variance heterogeneity through309

vGWAS means that the loci are likely to be involved in epistatic interactions. To validate this310

assumption and investigate whether epistasis can explain the identified vQTL and mvQTL in311

this study, we analyzed all possible pairwise interactions between the associated markers. We312

detected significant epistatic interactions between the associated markers (Figure 2), which313

can explain the existence of variance heterogeneity in the genotypes. Additionally, identifying314

vQTL through vGWAS serves as an effective way to restrict the search space when detecting315

epistatic QTL. Thus, with the vGWAS approach, many of the requirements necessary for316

conventional epistasis mapping can be avoided (e.g., large sample size and extensive multiple317

testing corrections that reduce power). However, Forsberg and Carlborg (2017) empirically318

showed that the presence of variance heterogeneity does not always guarantee the presence of319

epistatic interactions that contribute to the total variation of the trait; therefore, the results320

should be interpreted carefully when multi-locus interactions are involved. Further, variance321

heterogeneity can also be observed in a population when two or more alleles having different322

effects on the phenotype are in high LD (Cao et al., 2014; Forsberg and Carlborg, 2017;323

Wang et al., 2014a). To rule out the possibility of LD as a source for variance heterogeneity324

in grain Cd in this population, we suggest the use of high-density markers and larger sample325

size to identify the actual functional alleles associated with Cd, their LD patterns, and their326

effects on the Cd phenotype (Struchalin et al., 2012; Forsberg and Carlborg, 2017).327

We performed candidate gene analysis of the identified vQTL on chromosomes 2A and 2B328
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to further explore the identified vQTL regions and elucidate the molecular basis underlying329

the Cd levels from these regions. The 2A and 2B regions were found to harbor numerous330

putative candidate genes encoding proteins with known functions (Table1 and Supplemen-331

tary File S2). Some of the candidate genes included homeobox-leucine zipper family protein,332

ABC transporter, MADS-box transcription factor, plant peroxidase, and glycosyltransferase,333

all of which have been associated with genetic regulation of Cd in plants (Whitt et al., 2018).334

For instance, several metal transporters, including ABC transporters, play important roles335

in heavy metal uptake, transport, and distribution and play key roles in Cd tolerance (Wang336

et al., 2017; Zhu et al., 2018). ABC transporters have been associated with the regulation337

of Cd concentration in crops by inhibiting Cd uptake in roots, accumulation, transporta-338

tion, and detoxification (Hu et al., 2019; Sheng et al., 2018; Zhang et al., 2018; Yao et al.,339

2018; Thakur et al., 2019; Wang et al., 2017). Similarly, homeodomain-leucine zipper fam-340

ily protein has been functionally associated with Cd tolerance by regulating the expression341

of metal transporters OsHMA2 and OsHMA3 in rice (Yu et al., 2019; Ding et al., 2018).342

These genes have been found to play important roles in loading Cd onto the xylem and343

root-to-shoot translocation of Cd in rice. In plants, response to heavy metals involves the344

accumulation of reactive oxygen species (ROS) that damage DNA and cellular machinery345

(Kumari et al., 2008; Rascio and Navari-Izzo, 2011). In Arabidopsis, the peroxidase genes346

At2g35380, PER20, and At2g18150 have been found to be associated with Cd responses by347

affecting the lignin biosynthesis in root cells under high Cd stress (Mortel et al., 2008; Chen348

and Kao, 1995). The two genomic regions associated with variance heterogeneity harbor nu-349

merous putative candidate genes that are likely to play roles in regulating Cd concentrations350

in wheat. Further, the two genomic regions associated with variance heterogeneity presented351

sequence similarity and the 2A region falls within the 2B region (Supplementary File S2:352

Figure S4). This raises an important question whether the gene redundancy in polyploidy353

species has any role in generating the variance heterogeneity.354
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Conclusion355

We showed the potential of vGWAS for dissecting the genetic architecture of complex traits356

and identifying novel genomic regions influencing variance heterogeneity in wheat. We pro-357

vided evidence that many genes contribute to natural variation in grain Cd concentration358

through non-additive genetic effects. This is particularly evidenced by epistatic interactions359

between mvQTL on chromosome 5A and vQTL on chromosomes 2A and 2B.360
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Tables370

Table 1: List of selected putative candidate genes based on function and literature search
associated to variance heterogeneity in the genetic regulation of grain cadmium concentration
in wheat.

Chr1 Gene ID Putative Function GO annotation2 Reference
2A TraesCS2A01G474000 Homeobox-leucine

zipper family
protein

DNA binding Zhu et al. (2018);
Yu et al. (2019);
Ding et al. (2018);
Alomari et al.
(2018)

2A/2B TraesCS2A01G474100/
TraesCS2B01G497600

ABC transporter Transporter ac-
tivity; ATP bind-
ing; ATPase ac-
tivity

Hu et al. (2019);
Sheng et al.
(2018); Zhang
et al. (2018);
Yao et al. (2018);
Thakur et al.
(2019)

2A TraesCS2A01G475000 MADS-box tran-
scription factor

Transcription
factor activity,
sequence-specific
DNA bind-
ing; nucleus;
regulation of
transcription,
DNA-templated

Yu et al. (2019);
Zhao et al.
(2019); Xu et al.
(2018); Ding
et al. (2018);
Bhatta et al.
(2018); Palmer
et al. (2013)

2A/2B TraesCS2A01G476300/
TraesCS2B01G499900

Peroxidase Peroxidase ac-
tivity; response
to oxidative
stress; oxidation-
reduction process

Bhatta et al.
(2018); Mortel
et al. (2008)

2A/2B TraesCS2A01G474700/
TraesCS2B01G498300

Glycosyltransferase Metabolic pro-
cess; transferase
activity, trans-
ferring hexosyl
groups

Xu et al. (2015);
Peng et al. (2015)
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Figures371

Figure 1: Circular Manhattan plot of standard genome-wide association studies (GWAS)
based on mean differences (inner), and variance GWAS based on double generalized linear
model (middle) and hierarchical generalized linear model (outer) for grain cadmium concen-
tration in the hard-red winter wheat association panel. The red dots represent the significant
markers associated with either mean or variance heterogeneity quantitative trait loci. The
blue line in each circular plot shows the cutoff for the statistical significance (P < 9.01×10−6).
The P -values in − log10 scale are given in black vertical line.
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Figure 2: Heat map showing all possible pairwise epistatic interactions between the asso-
ciated markers on chromosomes 2A, 2B, and 5A. The lower the P -value, the darker the
shading. Interactions that are statistically significant (P < 3.7 × 10−5) are shown in gray
color.
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Figure 3: Violin plot showing the differences in the mean and variance of grain cadmium
concentration with alternative marker allele groups coded as AA and BB for the top three
significant markers associated with vQTL on (A) chromosome 2A and (B) chromosome 2B.
The mean of marker genotypes AA and BB are connected by red dotted line.
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Figure 4: Epistatic interaction between single nucleotide polymorphisms on 5A (mvQTL) and
2B (vQTL) chromosomes. AA and BB represent the alternate genotypes at the particular
SNP. Large difference in grain cadmium concentrations at BB genotype compared to no
difference at AA genotype indicates the presence of interaction.
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(2015). The multi-allelic genetic architecture of a variance-heterogeneity locus for molyb-411

denum concentration in leaves acts as a source of unexplained additive genetic variance.412

PLoS Genetics, 11(11):e1005648.413

Forsberg, S. K. G. and Carlborg, . (2017). On the relationship between epistasis and genetic414

variance heterogeneity. Journal of Experimental Botany, 68(20):5431–5438.415

Guttieri, M. J., Baenziger, P. S., Frels, K., Carver, B., Arnall, B., Wang, S., Akhunov, E.,416

and Waters, B. M. (2015). Prospects for selecting wheat with increased zinc and decreased417

cadmium concentration in grain. Crop Science, 55(4):1712–1728.418

25

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/668087doi: bioRxiv preprint first posted online Jun. 12, 2019; 

http://dx.doi.org/10.1101/668087
http://creativecommons.org/licenses/by-nc/4.0/


Hoffman, G. E. (2013). Correcting for Population Structure and Kinship Using the Linear419

Mixed Model: Theory and Extensions. PLoS ONE, 8(10):e75707.420

Hu, Y., Xu, L., Tian, S., Lu, L., and Lin, X. (2019). Site-specific regulation of transcriptional421

responses to cadmium stress in the hyperaccumulator, sedum alfredii: based on stem422

parenchymal and vascular cells. Plant Molecular Biology, pages 1–16.423

Hulse, A. M. and Cai, J. J. (2013). Genetic variants contribute to gene expression variability424

in humans. Genetics, 193(1):95–108.425

Kumari, M., Taylor, G. J., and Deyholos, M. K. (2008). Transcriptomic responses to426

aluminum stress in roots of arabidopsis thaliana. Molecular Genetics and Genomics,427

279(4):339.428

Kusmec, A., Srinivasan, S., Nettleton, D., and Schnable, P. S. (2017). Distinct genetic429

architectures for phenotype means and plasticities in zea mays. Nature Plants, 3(9):715.430

Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models. Journal of the431

Royal Statistical Society: Series B (Methodological), 58(4):619–656.432

Lee, Y., Nelder, J. A., and Pawitan, Y. (2006). Generalized linear models with random433

effects: unified analysis via H-likelihood. Chapman and Hall/CRC.434

Li, J. and Ji, L. (2005). Adjusting multiple testing in multilocus analyses using the eigen-435

values of a correlation matrix. Heredity, 95(3):221.436

Mackay, T. F. and Lyman, R. F. (2005). Drosophila bristles and the nature of quantitative437

genetic variation. Philosophical Transactions of the Royal Society B: Biological Sciences,438

360(1459):1513–1527.439

Menke, A., Muntner, P., Silbergeld, E. K., Platz, E. A., and Guallar, E. (2008). Cad-440

mium levels in urine and mortality among US adults. Environmental Health Perspectives,441

117(2):190–196.442

26

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/668087doi: bioRxiv preprint first posted online Jun. 12, 2019; 

http://dx.doi.org/10.1101/668087
http://creativecommons.org/licenses/by-nc/4.0/


Mortel, J. E. V. D., Schat, H., Moerland, P. D., Themaat, E. V. L. V., Ent, S. V. D.,443

Blankestijn, H., Ghandilyan, A., Tsiatsiani, S., and Aarts, M. G. M. (2008). Expression444

differences for genes involved in lignin, glutathione and sulphate metabolism in response445

to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi446

caerulescens. Plant, Cell & Environment, 31(3):301–324.447

Nachman, M. W., Hoekstra, H. E., and D’Agostino, S. L. (2003). The genetic basis of448

adaptive melanism in pocket mice. Proceedings of the National Academy of Sciences,449

100(9):5268–5273.450

Nelson, R. M., Pettersson, M. E., Li, X., and Carlborg, . (2013). Variance Heterogeneity in451

Saccharomyces cerevisiae Expression Data: Trans-Regulation and Epistasis. PLoS ONE,452

8(11):e79507.453

Palmer, C. M., Hindt, M. N., Schmidt, H., Clemens, S., and Guerinot, M. L. (2013).454

Myb10 and myb72 are required for growth under iron-limiting conditions. PLoS Genetics,455

9(11):e1003953.456

Par, G., Cook, N. R., Ridker, P. M., and Chasman, D. I. (2010). On the Use of Variance457

per Genotype as a Tool to Identify Quantitative Trait Interaction Effects: A Report from458

the Women’s Genome Health Study. PLoS Genetics, 6(6):e1000981.459

Patterson, N., Price, A. L., and Reich, D. (2006). Population Structure and Eigenanalysis.460

PLOS Genetics, 2(12):e190.461

Peng, H., He, X., Gao, J., Ma, H., Zhang, Z., Shen, Y., Pan, G., and Lin, H. (2015).462

Transcriptomic changes during maize roots development responsive to cadmium (cd) pol-463

lution using comparative rnaseq-based approach. Biochemical and Biophysical Research464

Communications, 464(4):1040–1047.465

Perry, G. M. L., Nehrke, K. W., Bushinsky, D. A., Reid, R., Lewandowski, K. L., Hueber,466

27

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/668087doi: bioRxiv preprint first posted online Jun. 12, 2019; 

http://dx.doi.org/10.1101/668087
http://creativecommons.org/licenses/by-nc/4.0/


P., and Scheinman, S. J. (2012). Sex Modifies Genetic Effects on Residual Variance in467

Urinary Calcium Excretion in Rat ( Rattus norvegicus ). Genetics, 191(3):1003–1013.468

Price, A. L., Zaitlen, N. A., Reich, D., and Patterson, N. (2010). New approaches to popula-469

tion stratification in genome-wide association studies. Nature Reviews Genetics, 11(7):459.470

Queitsch, C., Sangster, T. A., and Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic471

variation. Nature, 417(6889):618–624.472

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foun-473

dation for Statistical Computing, Vienna, Austria.474

Rascio, N. and Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why475

do they do it? and what makes them so interesting? Plant Science, 180(2):169–181.476
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