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Abstract23

With the advent of high-throughput phenotyping platforms, plant breeders have a means24

to assess many traits for large breeding populations. However, understanding the genetic25

interdependencies among high-dimensional traits in a statistically robust manner remains26

a major challenge. Since multiple phenotypes likely share mutual relationships, elucidating27

the interdependencies among economically important traits can better inform breeding de-28

cisions and accelerate the genetic improvement of plants. The objective of this study was to29

leverage confirmatory factor analysis and graphical modeling to elucidate the genetic interde-30

pendencies among a diverse agronomic traits in rice. We used a Bayesian network to depict31

conditional dependencies among phenotypes, which can not be obtained by standard multi-32

trait analysis. We utilized Bayesian confirmatory factor analysis which hypothesized that 4833

observed phenotypes resulted from six latent variables including grain morphology, morphol-34

ogy, flowering time, physiology, yield, and morphological salt response. This was followed35

by studying the genetics of each latent variable, which is also known as factor, using single36

nucleotide polymorphisms. Bayesian network structures involving the genomic component37

of six latent variables were established by fitting four algorithms (i.e., Hill Climbing, Tabu,38

Max-Min Hill Climbing, and General 2-Phase Restricted Maximization algorithms). Phys-39

iological components influenced the flowering time and grain morphology, and morphology40

and grain morphology influenced yield. In summary, we show the Bayesian network coupled41

with factor analysis can provide an effective approach to understand the interdependence42

patterns among phenotypes and to predict the potential influence of external interventions43

or selection related to target traits in the interrelated complex traits systems.44
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Introduction45

A primary objective in plant breeding is the develop high yielding varieties with specific46

grain qualities, resilience to pests and abiotic stresses, and superior adaption to the target47

environment. As a result, plant breeders devote considerable resources to extensive pheno-48

typic evaluation of germplasm and select on multiple traits. These traits are often correlated49

at a genetic level through common genetic effects (e.g., pleiotropy) or linkage disequilibrium50

between quantitative trait locus (QTL). Since multiple phenotypes may exhibit mutual re-51

lationships, knowledge of the interdependence among agronomically important traits can52

improve the efficacy of selection and rate of genetic improvement in systems with complex53

traits.54

In a standard quantitative genetic analysis, multivariate phenotypes can be modeled55

through multi-trait models (MTM) of Henderson and Quaas (1976) or some genomic coun-56

terparts (e.g., Calus and Veerkamp 2011; Jia and Jannink 2012) by leveraging genetic or57

environmental correlations among traits. In particular, MTM has been useful in deriving58

genetic correlations and enhancing the prediction accuracy of breeding values for traits with59

low heritability or scarce records via joint modeling with one or more genetically correlated,60

highly heritable traits (Mrode 2014). Conventional MTM strategies may provide important61

insight into the genetic relations between agronomically important traits, but they fail to62

explain how these traits are related. For instance, consider a case where we have three63

genetically correlated traits: y1, y2, and y3. With MTM, we cannot address whether the64

relationship between y1 and y3 is due to direct effects, or if the relationship is driven by65

indirect effects mediated by y2. Bayesian Networks (BN) offer an effective approach to elu-66

cidate the underlying network structure in multivariate data and infer network relationships67

between correlated variables. A BN is a probabilistic graphical model that represents condi-68

tional dependencies among a set of variables via a directed acyclic graph (DAG) (Neapolitan69

et al. 2004). In the DAG, the variables are represented by nodes, while their conditional70
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dependencies between nodes are indicated with directed edges. In the context of plant71

breeding, BN can used to elucidate the interdependencies among traits and inform selection72

decisions for simultaneously improving multiple traits. For instance in the latter case above73

(y1 → y2 → y3), selection directly on y2 will affect the quantity of y3 without an effect on y1.74

With the advent high-throughput phenotyping (HTP) platforms, plant breeders have75

been provided with a suite of tools for phenotypic evaluation of large populations (Shakoor76

et al. 2017). These platforms leverage robotics, precise environmental control, and remote77

sensing techniques to provide accurate, repeatable and high resolution phenotypes for large78

breeding populations throughout the growing season (Araus and Cairns 2014; Shakoor et al.79

2017; Araus et al. 2018). These data can be used to redefine characteristics underlying80

superior agronomic performance by quantifying secondary traits associated with seedling81

vigor, plant architecture, photosynthesis, transpiration, disease resistance, and stress toler-82

ance (Cabrera-Bosquet et al. 2016; Sun et al. 2017; Crain et al. 2018). However given these83

new approaches, breeders are faced with the new challenge of efficiently utilizing these large84

multidimesional data sets to improve selection efficiency. The primary challenges associated85

with multivariate analysis and BN approaches using HTP data is that robust parameter86

estimates can be untenable because the number of estimated parameters within the model87

increases with the increasing number of phenotypes. Moreover, even in cases where MTM or88

BN can be applied, interpreting of interrelationships among a large number of phenotypes89

can be difficult.90

One approach to characterize high-dimensional phenotypes is by using factor analysis91

(FA). The central idea of FA approaches is to reduce the dimensions of multivariate data92

sets by constructing unobserved, latent factors, or modules, from correlated phenotypes93

(de los Campos and Gianola 2007). The biological importance of these latent factors can be94

interpreted by inspecting the phenotypes that contribute to each factor. Thus, the advantage95

of FA for large, multivariate data sets is two fold. First, FA provides a means to reduce96

the dimensions of multivariate data sets thereby providing statistically sound parameter97
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estimates, and easing visualization and interpretation. Secondly, the latent variables/factors98

themselves may be representative of underlying biological processes that cannot be observed99

or measured in the population. For instance, several studies have highlighted the effects100

of plant hormones such as GA on multiple morphological attributes (Wang and Li 2006;101

Lo et al. 2008; Umehara et al. 2008; Bhattacharya et al. 2010; Brewer et al. 2013; Zhou102

et al. 2013). Thus, a latent factor constructed from these morphological traits may provide103

information on the biosynthesis or sensitivity of these hormones for individuals within the104

population. If a certain amount of knowledge regarding the biological role of the variables is105

already known, a varaint of FA, confirmatory factor analysis (CFA), can be used to estimate106

latent variables based on predetermined biological classes of observed traits (Jöreskog 1969).107

These latent variables underlie observed phenotypes and can be evaluated for how well the108

data support the hypothesis. For instance, Peñagaricano et al. (2015) performed CFA in109

swine to derive five latent variables from 19 phenotypic traits and inferred BN structures110

among those latent variables, thereby demonstrating the potential of this approach.111

This study aimed to leverage CFA and graphical modeling to elucidate the genetic in-112

terdependencies among traits typically recorded in breeding programs (e.g., yield, plant113

morphology, phenology, and stress resilience). First, we constructed latent variables, using114

prior biological knowledge obtained from the literature. Then we connected the observed115

high-dimensional phenotypes with these to establish latent variables via Bayesian confirma-116

tory factor analysis (BCFA) to reduce the dimensions of the dataset. Further, factor scores117

computed from BCFA were considered new phenotypes for a Bayesian multivariate analysis118

to separate breeding values from noise. This was followed by adjustment of breeding values119

via Cholesky decomposition to eliminate the dependencies introduced by genomic relation-120

ships. Finally, the adjusted breeding values were considered inputs to assess the network121

structure between latent variables by conducting a Gaussian BN analysis. This study is the122

first, to our knowledge, in rice to characterize various phenotypes with graphical modeling123

such as BCFA and BN.124

6



Materials and Methods125

Phenotypic and genotypic data126

The rice dataset comprised n = 374 accessions sampled from six subpopulations: temperate127

japonica (92), tropical japonica (85), indica (77), aus (52), aromatic (12), and admixture128

of japonica and indica (56) (Zhao et al. 2011). The improvement status of each accession129

was obtained from the USDA-ARS Germplasm Resources Information Network. We used130

t = 48 phenotypes and data regarding 44,000 single-nucleotide polymorphisms (SNP). After131

removing SNP markers with minor allele frequency less than 0.05, 374 accessions and 33,584132

markers were used for further analysis. Of those, 27 phenotypes were reported in Zhao et al.133

(2011) and McCouch et al. (2016). These phenotypes can be classified into four categories:134

flowering time (flowering time at three locations, photoperiod sensitivity), grain morphology135

(seed length, seed width, seed surface area, seed length to width ratio, seed volume), plant136

morphology (culm habit/angle, flag leaf length and width, plant height at maturity), and137

yield traits (panicle fertility, seed number per panicle, number of primary branches on the138

main panicle, panicle length, and the number of panicles on each plant). Zhao et al. (2011)139

evaluated flowering time-related traits using data from three locations, while the remaining140

traits were evaluated at one location (Arkansas). The remaining phenotypes were assessed141

from the salinity stress experiments conducted in Campbell et al. (2017). These traits were142

classified into three categories: morphological salt response, ionic components of salt stress,143

and plant morphology. The class morphological salt response represents how plant growth is144

affected by salinity stress and is composed of the ratio of shoot biomass of salt stressed plants145

to control, the ratio of root biomass of salt stressed plants to control, the ratio of the number146

of tillers for salt stressed plants to control, and two metrics that represent the ratio of shoot147

height of salt stressed plants to control. Ionic components of salt stress is composed of traits148

that quantify ions important for salinity tolerance (Na+ and K+) in both root and shoot149
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tissues. Morphology traits are those that describe the growth of the plant in both control and150

saline conditions (e.g. shoot biomass, root biomass, shoot height, and tiller number). The151

data used from Campbell et al. (2017) were derived from three to six independent greenhouse152

experiments performed between July and October 2013. Information for all experiments were153

combined and best linear unbiased estimators were calculated for each line as described in154

Campbell et al. (2017). The detailed descriptions of the phenotypes are summarized in155

Supplementary Table S1.156

Bayesian confirmatory factor analysis157

A CFA under the Bayesian framework was performed to model 48 phenotypes. The number

of factors and the pattern of phenotype-factor relationships need to be specified in BCFA

prior to model fitting. We constructed six latent variables (q = 6) from previous reports

(Acquaah 2009; Zhao et al. 2011; Campbell et al. 2017). The six latent variables derived from

our analysis represent the grain morphology, morphology, flowering time, ionic components of

salt stress, yield, and morphological salt response (Table S1). Each latent variable captures

common signals spanning genetic and environmental effects across all its phenotypes. The

latent variables, which determine the observed phenotypes can be modeled as

T = ΛF + s,

where T is the t × n matrix of observed phenotypes, Λ is the t × q factor loading matrix,

F is the q × n latent variables matrix, and s is the t × n matrix of specific effects. Here,

Λ maps latent variables to the observed variables and can be interpreted as the extent of

contribution each latent variable to phenotype. This can be derived by solving the following

variance-covariance model.

var(T) = ΛΦΛ′ + Ψ,
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where Φ is the variance of latent variables, and Ψ is the variance of specific effects (Brown158

2014). Six latent variables were assumed to account for the covariance in the observed159

phenotypes. Moreover, latent variables were assumed to be correlated with each other. Prior160

distributions were assigned to all unknown parameters. The non-zero coefficients within161

factor loading matrix Λ were assumed to follow a Gaussian distribution with mean of 0162

and variance of 0.01. The variance-covariance matrix Φ was assigned an inverse Wishart163

distribution with a 6 × 6 identity scale matrix I66 and a degree of freedom 7, Φ ∼ W−1(I66, 7)164

and an inverse Gamma distribution with scale parameter 1 and shape parameter 0.5 was165

assigned to Ψ ∼ Γ−1(1, 0.5).166

We employed the blavaan R package (Merkle and Rosseel 2018) jointly with JAGS167

(Hornik et al. 2003) to fit the above BCFA. The blavaan runs the runjags R package (Den-168

wood 2016) to summarize the Markov chain Monte Carlo (MCMC) and samples unknown169

parameters from the posterior distributions. Three MCMC chains, each of 5,000 samples170

with 2,000 burn-in, were used to infer the unknown model parameters. The convergence of171

the parameters was investigated with trace plots and potential scale reduction factor (PSRF)172

less than 1.2 (Brooks and Gelman 1998). The PSRF computes the difference between esti-173

mated variances among multiple Markov chains and estimated variances within the chain.174

A large difference indicates non-convergence and may require additional Gibbs sampling.175

Subsequently, the posterior means of factor scores (F), which reflect the contribution of176

latent variables to each accession were estimated. Within each draw of Gibbs sampling, F177

was sampled from the conditional distribution of p(F|θ,T), where θ refers to the unknown178

parameters in Λ, Φ, and Ψ. This conditional distribution was derived with data augmenta-179

tion (Tanner and Wong 1987) assuming F as missing data (Lee and Song 2012).180
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Multivariate genomic best linear unbiased prediction181

We fitted a Bayesian multivariate genomic best linear unbiased prediction to separate breed-

ing values from population structure and noise in the six factor scores computed previously.

F = µ + Xb + Zu + ε,

where µ is the vector of intercept, X is the incidence matrix of covariates, b is the vector of182

covariate effects, Z is the incidence matrix relating accessions with additive genetic effects, u183

is the vector of additive genetic effects, and ε is the vector of residuals. The incident matrix184

X included subpopulation information (temperate japonica, tropical japonica, indica, aus,185

aromatic, and admixture), as the rice diversity panel used herein shows a clear substructure186

(Zhao et al. 2011).187

A flat prior was assigned to µ and b, and the joint distribution of u and ε follows

multivariate normal u

ε

 ∼ N


0

0

 ,

Σu ⊗G 0

0 Σε ⊗ I


 ,

where G represents the second genomic relationship matrix of VanRaden (2008), I is the188

identity matrix, Σu and Σε refer to 6×6 dimensional genetic and residual variance-covariance189

matrices, respectively. An inverse Wishart distribution with a 6 × 6 identity scale matrix190

of I66 and a degree of freedom 6 was assigned as prior for Σu,Σe ∼ W−1(I66, 6). These191

parameters were selected so that relatively uninformative priors were used. The Bayesian192

multivariate genomic best linear unbiased prediction model was implemented using the MTM193

R package (https://github.com/QuantGen/MTM). Posterior mean estimates of genomic cor-194

relation between latent variables and predicted breeding values (û) were then obtained. The195

convergence of the estimated parameters was verified by trace plots.196
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Sample independence in the Bayesian network197

Theoretically, BN learning algorithms assume sample independence. In the multivariate

genomic best linear unbiased prediction, the residuals between phenotypes were assumed

independent through I374x374. However, phenotypic dependencies were introduced by the G

matrix for the additive genetic effects, thereby potentially serving as a confounder. Thus, a

transformation of û was carried out to derive an adjusted û∗ by eliminating the dependencies

in G. For a single trait model, the adjusted û∗ can be computed by premultiplying û by

L−1, where L is a lower triangular matrix derived from the Choleskey decompostion of G

matrix (G = LL
′
). Since u ∼ N (0,Gσ2

u), the distribution of û∗ follows N (0, Iσ2
u) (Callanan

and Harville 1989; Vazquez et al. 2010)

V ar(u∗) = V ar(L−1u)

= L−1V ar(u)(L−1)
′

= L−1G(L−1)
′
σ2
u

= L−1LL
′
(L′)−1σ2

u

= Iσ2
u.

This transformation can be extended to a multi-traits model by defining u∗ = M−1u, where198

M−1 = Iqq ⊗ L−1 (Töpner et al. 2017). Under the multivariate framework, u follows199

N (0,Σu ⊗G) and the variance of u∗ is200

V ar(u∗) = V ar(M−1u)

= (Iqq ⊗ L−1)(Σu ⊗G)(Iqq ⊗ L−1)
′

= (Iqq ⊗ L−1)(Σu ⊗ LL
′
)(Iqq ⊗ L−1)

′

= Σu ⊗ Inn,
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where L−1LL
′
(L−1)

′
= Inn. This adjusted û∗ was used to learn BN structures between201

predicted breeding values.202

Bayesian network203

A BN depicts the joint probabilistic distribution of random variables through their condi-

tional independencies (Scutari and Denis 2014)

BN = (G,XV ),

where G represents a DAG = (V , E ) with nodes (V ) connected by one or more edges (E )

conveying the probabilistic relationships and the random vector XV = (X1, ..., XK) is K

random variables. The joint probability distribution can be factorized as

P (XV ) = P (X1, ..., XK) =
K∏
v=1

P (Xv|Pa(Xv)),

where Pa(Xv) denotes a set of parent nodes of child node Xv. The DAG and joint prob-204

ability distribution are governed by the Markov condition, which states that every random205

variable is independent of its non-descendants conditioned on its parents. A BN is known206

as a Gaussian BN, when all variables or phenotypes are defined as marginal or conditional207

Gaussian distribution as in the present study.208

The adjusted breeding values û∗ were used to infer a genomic network structure among209

the aforementioned six latent variables. There are three types of structure-learning algo-210

rithms for BN: constraint-based algorithms, score-based algorithms, and a hybrid of these211

two (Scutari and Denis 2014). The constraint-based algorithms can be originally traced212

to the inductive causation algorithm (Verma and Pearl 1991), which uses conditional in-213

dependence tests for network inference. Briefly, the first step is to identify a d-separation214

set for each pair of nodes and confer an undirected edge between the two if they are not215
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d-separated. The second step is to identify a v-structure for each pair of non-adjacent nodes,216

where a common neighbor is the outcome of two non-adjacent nodes. In the last step, com-217

pelled edges were identified and oriented, where neither cyclic graph nor new v-structures218

are permitted. The score-based algorithms are based on heuristic approaches, which first219

assign a goodness-of-fit score for an initial graph structure and then maximize this score by220

updating the structure (i.e., add, delete, or reverse the edges of initial graph). The hybrid al-221

gorithm includes two steps, restrict and maximize, which harness both constraint-based and222

score-based algorithms to construct a reliable network. In this study, the two score-based223

(Hill Climbing and Tabu) and two hybrid algorithms (Max-Min Hill Climbing and General224

2-Phase Restricted Maximization) were used to perform structure learning. A flow diagram225

to illustrate the concept of constraint-based Bayesian netwrok structure learning algorithm226

is shown in Figure 1.227

We quantified the strength of edges and uncertainty regarding the direction of networks,228

using 500 bootstrapping replicates with a size equal to the number of accessions and per-229

formed structure learning for each replicate in accordance with Scutari and Denis (2014).230

Non-parametric bootstrap resampling aimed at reducing the impact of the local optimal231

structures by computing the probability of the arcs and directions. Subsequently, 500 learned232

structures were averaged with a strength threshold of 85% or higher to produce a more robust233

network structure. This process, known as model averaging, returns the final network with234

arcs present in at least 85% among all 500 networks. Candidate networks were compared235

on the basis of the Bayesian information criterion (BIC) and Bayesian Gaussian equivalent236

score (BGe). The BIC accounts for the goodness-of-fit and model complexity, and BGe aims237

at maximizing the posterior probability of networks per the data. All BN were learned via238

the bnlearn R package (Scutari 2010). In bnlearn, the BIC score is rescaled by -2, which239

indicates that the larger BIC refers to a preferred model.240
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Data availability241

Genotypic data regarding the rice accessions can be downloaded from the rice diversity panel242

website (http://www.ricediversity.org/). Phenotypic data used herein are available in243

Zhao et al. (2011), Campbell et al. (2017), and Supplementary File S3.244
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Results245

To elucidate the genetic interdependencies among traits typically recorded in breeding pro-246

grams, we utilized a collection of 48 publicly available phenotypes recorded on a panel of247

diverse rice accessions (Zhao et al. 2011; Campbell et al. 2017). The phenotypic data was de-248

rived from two independent studies. The first set of phenotypes was recorded from materials249

grown in two field environments in Arkansas and Faridpur Bangladesh, and in a greenhouse250

in Aberdeen, UK (Zhao et al. 2011). The 34 phenotypes were recorded at maturity and were251

largely associated with yield (panicle characteristics flowering time, plant morphology (e.g.,252

height and growth habits), and seed morphological traits. The second study consisted of 14253

phenotypes were recorded in a greenhouse environment on plants in the active tillering stage254

(e.g., 30 day-old plants) under control and saline (14 days of 9.5 dS m−2 NaCl stress). The255

phenotypes from this study can be classified into three categories: morphological traits (e.g.,256

shoot and root biomass, and plant height), morphological responses to salinity (e.g., the ratio257

of morphological traits in saline conditions to control), and the ionic components of salinity258

stress (e.g., Na+, K+, and Na+:K+ in both root and shoot tissues) (Campbell et al. 2017).259

The complete data set provides an in-depth characterization of phenotypic performance at260

vegetative and reproductive stages in rice using several classes of traits.261

Latent variable modeling262

The BCFA model grouped the observed phenotypes into the underlying latent variables263

on the basis of prior biological knowledge, assuming these latent variables determine the264

observed phenotypes. This allowed us to study the genetics of each latent variable. A265

measurement model derived from BCFA evaluating the six latent variables is shown in Figure266

2. Forty-eight observed phenotypes were hypothesized to result from the six latent variables:267

7 for flowering time, 14 for morphology, 5 for yield, 11 for grain morphology, 6 for physiology,268
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and 5 for salt response. The convergence of the parameters was confirmed graphically with269

the trace plots and a PSRF value less than 1.2 (Brooks and Gelman 1998; Merkle and Rosseel270

2018).271

The six latent factors showed strong contributions to the 48 observed phenotypes, with272

standardized regression coefficients ranging from -0.549 to 0.990 for flowering time, -0.349273

to 0.925 for morphology, -0.085 to 0.790 for yield, -0.476 to 0.990 for grain morphology,274

-0.265 to 0.983 for ionic components of salt stress, and -0.022 to 0.939 for salt response.275

The latent factor flowering time showed a strong positive contribution to flowering time in276

Arkansas (Fla) and Flowering time in Arkansas in 2007 (Fla7) (0.990 and 0.926, respectively;277

Table 1), indicating that larger values for the latent factor can be interpreted as a greater278

number of days from sowing to emergence of the inflorescence. The latent factor morphology279

showed the largest positive contributions to traits describing height during the vegetative280

stage (e.g., height to newest ligule in salt (Hls), 0.920; height to newest ligule in control281

(Hlc), 0.899; height to the tip of first fully expanded leaf in salt (Hfs), 0.907; and height282

to tip of first fully expanded leaf in control (Hfc), 0.925;) suggesting that this latent factor283

is an overall representation of plant size. Yield showed large positive contributions to the284

observed phenotypes primary panicle branch number (Ppn) and seed number per panicle285

(Snpp) (0.790 and 0.780, respectively), suggesting that larger values for yield indicate a286

higher degree of branching and seed number. Observed phenotypes describing seed size287

(e.g., seed volume (Sv) and brown rice volume (Bvl) (0.990 and 0.986, respectively)) were288

most strongly associated with grain morphology. The latent factor ionic components of salt289

stress showed strong positive contributions to two observed phenotypes that quantify the290

ionic components of salt stress (shoot Na+:K+ (Ks) and shoot Na+ (Nas) (0.983 and 0.975,291

respectively), indicating that higher values for the latent factor result in greater shoot Na+
292

and Na+:K+. Finally, the latent factor describing morphological salt response showed strong293

positive contributions to the observed phenotype describing the effect of salt treatment on294

plant height (ratio of height to tip of newest fully expanded leaf in salt to that of control295
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plants (Hfr) (0.939)), thus larger values for the latent factor may indicate a more tolerant296

growth response to salinity.297

Genomic correlation among latent variables298

To understand the genetic relationships between latent variables, genomic correlation analy-299

sis was performed. Genomic correlation is due to pleiotropy or linkage disequilibrium between300

QTL. The genomic correlations among latent variables are shown in Figure 3. Negative cor-301

relations were observed between morphological salt response (Msr) and all other five latent302

variables. In particular, flowering time (-0.5), yield (-0.54), and grain morphology (-0.74)303

were negatively correlated with morphological salt response. These results suggest that ac-304

cessions that harbor alleles for more tolerant morphological salt responses may also have305

alleles associated with longer flowering times, smaller seeds, and low yield. Similarly, a nega-306

tive correlation was observed between morphology and yield (-0.56) and between morphology307

and grain morphology (-0.31). Thus, accessions with alleles associated with large plant size308

may also have alleles that result in low yield, small grain volume, and lower shoot Na+ and309

Na+:K+. In contrast, a positive correlation was observed between grain morphology and310

yield (0.49) and between grain morphology and ionic components of salt stress (0.4). Thus,311

selection for large grain may result in improved yield, and higher shoot Na+ and Na+:K+.312

Bayesian network313

To infer the possible network structure between latent variables, BN was performed. Prior314

to BN, the normality of latent variables was assessed using histogram plots combined with315

density curves as shown in Supplementary Figure S1. Overall, all the six latent variables316

approximately followed a Gaussian distribution.317

The Bayesian networks learned with the score-based and hybrid algorithms are shown318

in Figure 4. The structures of BN were refined by model averaging with 500 networks from319
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bootstrap resampling to reduce the impact of local optimal structures. The labels of the arcs320

measure the uncertainty of the arcs, corresponding to strength and direction (in parenthesis).321

The former measures the frequency of the arc presented among all 500 networks from the322

bootstrapping replicates and the latter is the frequency of the direction shown conditional323

on the presence of the arc. We observed minor differences in the structures presented within324

and across the two types of algorithms used. In general, small differences were observed325

within algorithm types compared to those across algorithms. The two score-based algorithms326

produced a greater number of edges than two hybrid algorithms. The Hill Climbing algorithm327

produced seven directed connections among the six latent variables. Three connections were328

indicated towards flowering time from morphological salt response, ionic components of salt329

stress, and morphology, and two edges to yield from morphology and from grain morphology.330

Other two edges were observed from ionic components of salt stress to grain morphology and331

from grain morphology to morphological salt response. A similar structure was generated by332

the Tabu algorithm, except that the connection between salt response and grain morphology333

presented an opposite direction. The Max-Min Hill Climbing hybrid algorithm yielded six334

directed edges from morphological salt response to grain morphology, from ionic components335

of salt stress to grain morphology, from ionic components of salt stress to flowering time,336

from flowering time to morphology, from morphology to yield, and from grain morphology337

to yield. An analogous structure with the only difference observed in the directed edge from338

morphology to flowering time was inferred with the General 2-Phase Restricted Maximization339

algorithm. Across all four algorithms, there were four common directed edges: from ionic340

components of salt stress to flowering time and to grain morphology, and from morphology341

and grain morphology to yield. The most favorable network was considered the one from342

the Tabu algorithm, which returned the largest network score in terms of BIC (1086.61)343

and BGe (1080.88). Collectively, these results suggest that there may be a direct genetic344

influence of morphology and grain morphology on yield, and physiological components of345

salt tolerance on grain morphology and flowering time.346
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Discussion347

This study is based on the premise that most phenotypes interact to greater or lesser de-348

grees with each other through underlying physiological and molecular pathways. While these349

physiological pathways are important for the development of agronomically important char-350

acteristics, they are often unknown or difficult to assess in large populations. The approach351

utilized here leverages phenotypes that can be readily assessed in large populations to quan-352

tify these underlying unobserved phenotypes, and elucidates the relationships between these353

variables.354

Understanding the behaviors among phenotypes in the complex traits is critical for genetic355

improvement of agricultural species (Hickey et al. 2017). Graphical modeling offers an avenue356

to decipher bi-directional associations or probabilistic dependencies among variables of inter-357

est in plant and animal breeding. For instance, BN and L1-regularized undirected network358

can be used to model interrelationships of linkage disequilibrium (LD) (Morota et al. 2012;359

Morota and Gianola 2013) or phenotypic, genetic, and environmental interactions (Xavier360

et al. 2017) in a systematic manner. Importantly, MTM elucidates both direct and indirect361

relationships among phenotypes. Inaccurate interpretation of these relationships may sub-362

stantially bias selection decisions (Valente et al. 2015; Gianola et al. 2015). Thus, we applied363

BCFA to reduce the dimension of the responses by hypothesizing 48 manifest phenotypes364

originated from the underlying six constructed latent variables as shown in Figure 2 assum-365

ing that these latent traits are most important, followed by application of BN to infer the366

structures among the six biologically relevant latent variables (Figure 4). Note that there are367

two differences between the approach employed here and a path analysis. A path analysis368

1) uses observed variables rather than latent variables and 2) assumes a network structure is369

known priori. Thus, one advantage of our approach is that it can model a network structure370

at the level of latent variables and infer a network structure directly from data when prior371

information is not available from the literature or previous experiments. The BN represents372
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the conditional dependencies between variables. Care must be taken in interpreting these373

relationships as a causal effect. Although a good BN is expected to describe the underly-374

ing causal structure per the data, when the structure is learned solely on the basis of the375

observed data, it may return multiple equivalent networks that describe the data well. In376

practice, searching such a causal structure with observed data needs three additional as-377

sumptions (Scutari and Denis 2014): 1) each variable is independent of its non-effects (i.e.,378

direct and indirect) conditioned on its direct causes, 2) the probability distribution of vari-379

ables is supported by a DAG, where the d-separation in DAG provides all dependencies in380

the probability distribution, and 3) no additional variables influence the variables within the381

network. Although it may be difficult to meet these assumptions in the observed data, a BN382

is equipped with suggesting potential causal relationships among latent variables, which can383

assist in exploring data, making breeding decisions, and improving management strategies384

in breeding programs (Rosa et al. 2011).385

Biological meaning of latent variables and their relation-386

ships387

We performed BCFA to summarize the original 48 phenotypes with the six latent variables.388

The number of latent variables and which latent variables load onto phenotypes were deter-389

mined from the literature. The latent variable morphological salt response (Msr) contributed390

strongly to salt indices for shoot biomass, root biomass, and two indices for plant height (Ta-391

ble 1). Thus, morphological salt response can be interpreted as the morphological responses392

to salinity stress, with higher values indicating a more tolerant growth response. The la-393

tent variable yield is a representation of overall grain productivity, and contributed strongly394

to the observed phenotypes primary panicle branch number, seed number per panicle, and395

panicle length. The positive loading scores on these observable phenotypes indicates that396

more highly branched, productive panicles will have higher values for yield (Table 1). Seed397
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width, seed volume, and seed surface area contributed significantly to the latent variable398

grain morphology (Grm) (Table 1). Therefore, these results indicate that the grain mor-399

phology is a summary of the overall shape of the grain, where high values represent large,400

round grains, while low values represent small, slender grains. Considering the grain char-401

acteristics of rice subpopulations, temperate japonica accessions are expected to have high402

values for grain morphology, while indica accessions have lower values for grain morphology.403

Latent variable morphology (Mrp) is a representation of plant biomass during the vegetative404

stage (28-day-old plants) (Table 1). Shoot biomass, root biomass, and two metrics for plant405

height contributed largely to morphology, suggesting that accessions with high values for406

morphology are tall plants with a large biomass.407

Genomic correlation analysis among the six latent variables showed meaningful corre-408

lations among several pairs. These genetic correlations can either be caused by linkage or409

pleiotropy. The former is likely to prevail in species with high LD, which is the case in410

rice where LD ranges from 100 to 200kb (Huang et al. 2010). A negative relationship was411

observed between morphological salt response and three other latent variables (Figure 3).412

For instance, a negative correlation between morphological salt response and yield indicates413

that accessions of samples harboring alleles for superior morphological salt responses (e.g.,414

those that are more tolerant) tend to also harbor alleles for poor yield (Figure 3). The415

rice diversity panel we used is a representative sample of the total genetic diversity within416

cultivated rice and contains many unimproved traditional varieties (∼12% of lines in the417

study are landraces and ∼33% classified as cultivars; Supplementary File S2) and modern418

breeding lines (Eizenga et al. 2014). While traditional varieties exhibit superior adaptation419

to abiotic stresses, they often have very poor agronomic characteristics including low yield,420

late flowering, and high photoperiod sensitivity (Thomson et al. 2009, 2010). Moreover,421

the indica and japonica subspecies have contrasting salt responses and very different grain422

morphology. Japonica accessions tend to have short, round seeds and are more sensitive to423

salt stress, while indica accessions have long, slender grains and often are more salt tolerant424
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(Zhao et al. 2011; Campbell et al. 2017). The negative relationship observed between mor-425

phological salt response and grain morphology suggests that lines that harbor alleles for high426

grain morphology (e.g., large, round grains) tend to also harbor alleles for a tolerant growth427

response to salt stress. However, no studies have yet reported an association between alleles428

for grain morphology and morphological salt response. Therefore, it remains to be addressed429

whether this relationship is due to LD or pleitropy.430

Genetic correlations observed between other latent variables may suggest a pleiotropic431

effect among loci. For instance, a negative relationship was observed between morphological432

salt response and ionic components of salt stress, indicating that accessions harboring alleles433

associated with superior morphological salt response also tend to harbor alleles for reduced434

ion content under salt stress (Figure 3). The relationship between salt tolerance, measured in435

terms of growth or yield, and Na+ and Na+:K+ has been a documented for decades (reviewed436

by Munns and Tester (2008)). Moreover, natural variation for Na+ transporters has been437

utilized to improve growth and yield under saline conditions in rice and other cereals (Ren438

et al. 2005; Byrt et al. 2007; Horie et al. 2009; Munns et al. 2012; Campbell et al. 2017).439

Therefore, the negative genetic relationships observed between morphological salt response440

and ion content may be due to the pleiotropic effects of some loci.441

The genomic relationships among latent variables including morphology, yield, and grain442

morphology may have resulted from the selection of alleles associated with good agronomic443

characteristics. A positive relationship was observed between yield and grain morphology,444

suggesting that alleles that positively contribute to productive panicles also may contribute445

to large, round grains. Furthermore, the negative genomic correlation observed between446

morphology and yield indicates that alleles negatively influencing total plant biomass also447

have a positive contribution to traits for productive panicles. This genomic relationship may448

reflect the genetics of harvest index, which is defined as the ratio of grain yield to total449

biomass. Over the past 50 years, rice breeders have selected high harvest index, resulting450

in plants with short compact morphology and many highly productive panicles (Hay 1995;451
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Peng et al. 2008).452

Although BCFA may yield biologically meaningful results, a potential limitation of BCFA453

is that we assumed each phenotype does not measure more than one latent variable. This454

assumption may not always strictly concur with the observational data. Therefore, further455

studies are required to allow each phenotype to potentially load onto multiple factors in456

the BCFA framework. An alternative approach is to derive the number of latent variables457

and determine which latent variables load onto phenotypes directly from observed data,458

using exploratory FA. This approach was not pursued here because accurate estimation of459

unknown parameters in the exploratory FA requires a large sample size, which was not the460

case herein (Brown 2014).461

Bayesian network of latent variables462

The BN is a probabilistic DAG, which represents the conditional dependencies among phe-463

notypes. The genomic correlation among latent variables described in Figure 3 does not464

inform the flow of genetic signals nor distinguish direct and indirect associations, whereas465

BN displays directions between latent variables and separate direct and indirect associations.466

Therefore, the BN describes the possibility that other phenotypes will change if one pheno-467

type is intervened (i.e., selection). However, caution is required to interpret this network as468

a causal effect, as the causal BN requires more assumptions, which are usually difficult to469

meet in observational data (Pearl 2009).470

Four common edges or consensus subnetworks across the four BN may be the most reliable471

substructure of latent variables and may describe the dependence between agronomic traits472

(Figure 4). For example, edges from grain morphology to yield and morphology to yield can473

be interpreted as final grain productivity is dependant on specific vegetative characteristics474

as well grain traits. This is because yield, which represents the overall grain productivity of a475

plant, depends on morphological characteristics such as the degree of tillering, an architecture476

that allows the plant to efficiently capture light and carbon, and a stature that is resistant477
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to lodging, the degree of panicle branching, as well as specific grain characteristics such478

as seed volume and shape. Moreover, there is a direct biological linkage between specific479

vegetative architectural traits such as tillering and plant height, and yield related traits such480

as panicle branching and number of seeds per panicle. The degree of branching during both481

vegetative and reproductive development is dependant on the development and initiation of482

auxiliary meristems. Several genes have been identified in this pathway and have shown to483

have pleiotropic effects on tillering and panicle branching (reviewed by Liang et al. (2014)).484

For instance, OsSPL14 has been shown to be an important regulator of auxiliary branching485

in both vegetative and reproductive stages in rice (Jiao et al. 2010; Miura et al. 2010).486

Moreover, other genes such as OsGhd8 have been reported to regulate other morphological487

traits such as plant height and yield through increase panicle branching (Yan et al. 2011).488

The biological importance of these dependencies can also be illustrated by viewing them in489

the context of genetic improvement, as selection for specific architectural traits (represented490

by the latent variable morphology) and grain characteristics have traditionally been used as491

traits to improve rice productivity in many conventional breeding programs (Redona and492

Mackill 1998; Huang et al. 2013).493

While the above example provides a plausible network structure between latent variables,494

edges from ionic components of salt stress to flowering time and to grain morphology are an495

example of instances where caution should be used to infer causation. As mentioned above,496

there is an inherent difference in salt tolerance and grain morphological traits between the497

indica and japonica subspecies. The edges observed for these two latent variables (ionic498

components of salt stress and grain morphology) in BN may be driven by LD between alleles499

associated with grain morphology and alleles for salt tolerance rather than pleitropy. Thus,500

given the current data set, genetic effects for grain morphology may still be conditionally501

dependant on ionic components of salt stress and the BN may be true, even if there is no502

direct overlap in the genetic mechanisms for the two traits.503

We found that there are some uncertain edges among BN in Figure 4. For instance, di-504
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rection from morphological salt response to grain morphology is supported by 65% (Tabu),505

58% (Max-Min Hill Climbing), and 58% (General 2-Phase Restricted Maximization) boot-506

strap sampling, whereas the opposite direction is supported by 56% bootstrap sampling (Hill507

Climbing). An analogous uncertainty was also observed between morphology and flowering508

time, i.e., the path from morphology to flowering time was supported 60% (Hill Climbing),509

51% (Tabu), and 52% (General 2-Phase Restricted Maximization), while the reverse direc-510

tion was supported 51% (Max-Min Hill Climbing) upon bootstrapping. In addition, the two511

score-based algorithms captured edges between morphological salt response and flowering512

time with 70% and 76% bootstrapping evidence. However, this connection was not detected513

in the two hybrid algorithms. In general, inferring the direction of edges was harder than514

inferring the presence or absence of undirected edges. Finally, the whole structures of BN515

were evaluated in terms of the BIC score and BGe. Ranking of the networks was consistent516

across BIC and BGe and the two score-based algorithms produced networks with greater517

goodness-of-fit than the two hybrid algorithms. The optimal network was produced by the518

Tabu algorithm. This is consistent with the previous study reporting that the score-based519

algorithm produced a better fit of networks in data on maize (Töpner et al. 2017).520

In conclusion, the present results show the utility of CFA and network analysis to char-521

acterize various phenotypes in rice. We showed that the joint use of BCFA and BN can be522

applied to predict the potential influence of external interventions or selection associated with523

target traits such as yield in the high-dimensional interrelated complex traits system. We524

contend that the approaches used herein provide greater insights than pairwise-association525

measures of multiple phenotypes and can be used to analyze the massive amount of di-526

verse image-based phenomics dataset being generated by the automated plant phenomics527

platforms (e.g., Furbank and Tester 2011). With a large volume of complex traits being528

collected through phenomics, numerous opportunities to forge new research directions are529

generated by using network analysis for the growing number of phenotypes.530
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Tables686

Table 1: Standardized factor loadings obtained from the Bayesian confirmatory factor anal-
ysis. PSD refers to the posterior standard deviation of standardized factor loadings.

Latent variable Observed phenotype Loading PSD
Flowering time Flowering time at Arkansas (Fla) 0.990 0.002
Flowering time Flowering time at Faridpur (Flf) 0.500 0.045
Flowering time Flowering time at Aberdeen (Flb) 0.578 0.038
Flowering time FT ratio of Arkansas/Aberdeen (Flaa) -0.212 0.053
Flowering time FT ratio of Faridpur/Aberdeen (Flfa) -0.549 0.041
Flowering time Year07 Flowering time at Arkansas (Fla7) 0.926 0.008
Flowering time Year06 Flowering time at Arkansas (Fla6) 0.886 0.013
Morphology Culm habit (Cuh) 0.227 0.027
Morphology Flag leaf length (Fll) 0.116 0.057
Morphology Flag leaf width (Flw) -0.044 0.058
Morphology Plant height (Plh) 0.440 0.047
Morphology Shoot BM Control (Sbc) 0.534 0.042
Morphology Shoot BM Salt (Sbs) 0.456 0.048
Morphology Root BM Control (Rbc) 0.418 0.048
Morphology Root BM Salt (Rbs) 0.280 0.054
Morphology Tiller No Salt (Tns) -0.349 0.051
Morphology Tiller No Control (Tbc) -0.318 0.052
Morphology Ht Lig Salt (Hls) 0.920 0.011
Morphology Ht Lig Control (Hlc) 0.899 0.014
Morphology Ht FE Salt (Hfs) 0.907 0.013
Morphology Ht FE Control (Hfc) 0.925 0.011
Yield Panicle number per plant (Pnu) 0.190 0.020
Yield Panicle length (Pal) 0.455 0.057
Yield Primary panicle branch number (Ppn) 0.790 0.041
Yield Seed number per panicle (Snpp) 0.780 0.043
Yield Panicle fertility (Paf) -0.085 0.081
Grain Morphology Seed length (Sl) 0.251 0.029
Grain Morphology Seed width (Sw) 0.876 0.015
Grain Morphology Seed volume (Sv) 0.990 0.002
Grain Morphology Seed surface area (Ssa) 0.901 0.012
Grain Morphology Brown rice seed length (Bsl) 0.158 0.055
Grain Morphology Brown rice seed width (Bsw) 0.837 0.019
Grain Morphology Brown rice surface area (Bsa) 0.902 0.012
Grain Morphology Brown rice volume (Bvl) 0.986 0.002
Grain Morphology Seed length/width ratio (Slwr) -0.476 0.045
Grain Morphology Brown rice length/width ratio (Blwr) -0.432 0.047
Grain Morphology Grain length McCouch2016 (Glmc) 0.047 0.064
Ionic components of salt stress Na K Shoot (Ks) 0.983 0.003
Ionic components of salt stress Na Shoot (Nas) 0.975 0.004
Ionic components of salt stress K Shoot Salt (Kss) -0.265 0.051
Ionic components of salt stress Na K Root (Kr) 0.061 0.052
Ionic components of salt stress Na Root (Nar) 0.001 0.053
Ionic components of salt stress K Root Salt (Krs) -0.095 0.052
Morphological salt response Shoot BM Ratio (Sbr) 0.410 0.047
Morphological salt response Root BM Ratio (Rbr) 0.395 0.051
Morphological salt response Tiller No Ratio (Tbr) -0.022 0.057
Morphological salt response Ht Lig Ratio (Hlr) 0.665 0.036
Morphological salt response Ht FE Ratio (Hfr) 0.939 0.019
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Figures687
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A ⊥ B | S; S: {D, E}
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Figure 1: Flow diagram to illustrate the concept of constraint-based structure learning algo-
rithm for a Bayesian network. The A, B, C, D, and E represent five nodes or latent variables.
S refers to a set of d-separation. The directed acyclic graph shown in Step 3 is one possible
completed partially directed acyclic graph.
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Figure 2: Relationship between six latent variables and observed phenotypes. Msr: mor-
phological salt response; Iss: ionic components of salt stress; Grm: grain morphology; Yid:
yield; Mrp: morphology; Flt: flowering time. Abbreviations of observed phenotypes are
shown in Table S1.
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Figure 3: Genomic correlation of six latent variables. The size of each circle, degree of
shading, and value reported correspond to the correlation between each pair of latent vari-
ables. Msr: morphological salt response; Iss: ionic components of salt stress; Grm: grain
morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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4a 4b

4c 4d

Figure 4: Bayesian networks between six latent variables based on two score-based (4a: Hill
Climbing and 4b: Tabu) and two hybrid (4c: Max-Min Hill Climbing and 4d: General 2-
Phase Restricted Maximization) algorithms. The quality of the structure was evaluated by
bootstrap resampling and model averaging across 500 replications. Labels of the edges refer
to the strength and direction (parenthesis) which measure the confidence of the directed edge.
The strength indicates the frequency of the edge is present and the direction measures the
frequency of the direction conditioned on the presence of edge. BIC: Bayesian information
criterion score. BGe: Bayesian Gaussian equivalent score. Msr: morphological salt response;
Iss: ionic components of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology;
Flt: flowering time.
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