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Abstract

Background: Cultivated rice consists of two subspecies, Indica and Japonica, that exhibit well-characterized
differences at the morphological and genetic levels. However, the differences between these subspecies at the
transcriptome level remains largely unexamined. Here, we provide a comprehensive characterization of transcriptome
divergence and cis-regulatory variation within rice using transcriptome data from 91 accessions from a rice diversity
panel (RDP1).

Results: The transcriptomes of the two subspecies of rice are highly divergent. Japonica have significantly lower
expression and genetic diversity relative to Indica, which is likely a consequence of a population bottleneck during
Japonica domestication. We leveraged high-density genotypic data and transcript levels to identify cis-regulatory
variants that may explain the genetic divergence between the subspecies. We identified significantly more eQTL that
were specific to the Indica subspecies compared to Japonica, suggesting that the observed differences in expression
and genetic variability also extends to cis-regulatory variation.

Conclusions: Using RNA sequencing data for 91diverse rice accessions and high-density genotypic data, we show
that the two species are highly divergent with respect to gene expression levels, as well as the genetic regulation of
expression. The data generated by this study provide, to date, the largest collection of genome-wide transcriptional
levels for rice, and provides a community resource to accelerate functional genomic studies in rice.

Keywords: RNA sequencing, Oryza sativa, Population genetics, Regulatory variation, Expression quantitative trait loci,
Gene expression, Natural variation

Background
Cultivated rice consists of two subspecies: Indica and
Japonica. Indica varieties are cultivated throughout the
tropics, and account for the majority of rice produc-
tion worldwide. Japonica varieties, on the other hand, are
grown in both tropical and temperate environments, and
only account for approximately 20% of rice production.
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Although the domestication history of rice remains a
contested topic, the current research collectively sug-
gests that rice was domesticated at least twice from two
geographically and ecologically distinct subpopulations
of Oryza rufipogon. The unique environmental pressures
in these distinct regions, as well as preferences by early
farmers for grain characteristics has resulted in large mor-
phological and physiological differences between the two
subspecies. These differences have been recognized for
centuries, as evidenced by references of Keng and Hsein
types of rice found in records from the Han Dynasty in
China [1].
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The unique natural and agronomic selection pres-
sures placed on the wild progenitors and early proto-
domesticates resulted in drastic changes at the genetic
level.Work byHuang et al. [2] showed considerable reduc-
tion in genetic diversity in Indica and Japonica compared
with O. rufipogon. Such drastic reductions in genetic
diversity are common following domestication. Moreover,
the transition from an out-crossing/heterogamous nature
ofO. rufipogon to the autogamous breeding system of cul-
tivated rice likely led to greater partitioning of genetic
diversity among the two subspecies, and further differen-
tiation of the two groups. These large genetic differences
have been recognized for nearly a century as hybrids
between Indica and Japonica exhibit low fertility [3]. More
recently, these genetic differences have been realized with
the availability of high density molecular markers and full
genome sequences for both Indica and Japonica [2, 4–12].
For instance, Ding et al. [4] showed that approximately
10% of the genes in the Indica and Japonica genomes
showed evidence of presence-absence variation or asym-
metrical genomic locations. Several other studies have
highlighted genetic differences between the subspecies
as structural variants differences, gene acquisition and
loss, transposable element insertion and single nucleotide
polymorphisms [2, 5–12].
While the morphological and genetic differences of

Indica and Japonica have received considerable attention,
few studies have investigated the divergence between the
two subspecies at transcriptome level [13–15]. Walia et
al. [13] utilized genome-wide expression profiling to char-
acterize the transcriptional responses for two Indica and
Japonica cultivars to salinity. This study was performed
to elucidate the mechanisms underlying the contrasting
responses to stress exhibited by the cultivars, rather than
examine the transcriptional difference between the sub-
species. Moreover, separating genotypic differences from
subspecies differences is not feasible with the low number
of cultivars used in these studies. Lu et al. [14] com-
pared transcriptional profiles of two Indica accessions
and a single Japonica accessions and identified many
novel transcribed regions, highlighted alternative splicing
differences, and differentially expressed genes between
accessions. Although these studies provided insights into
the transcriptional differences between Indica and Japon-
ica, given the small sample size, the scope for extending
conclusions to a population level is limited. Jung et al. [15]
leveraged the large number of publicmicroarray databases
to compare transcriptional diversity between the two sub-
species. The 983 publicly available Affymetrix microar-
rays were classified into Indica and Japonica subspecies
based on the cultivar name. This study showed that con-
siderable differences in expression levels were evident
between the two subspecies. However, large proportion
of information is likely lost due to the heterogeneity in

sample types (e.g. tissue, developmental stage) and vary-
ing growth conditions. Thus, a more highly controlled
study that utilized a larger panel with genotypic infor-
mation would provide greater insight into the differences
in expression levels, as well as provide a mechanism for
connecting transcriptional differences between the two
subspecies with genetic variation.
The objective of this study is to examine the genetic

basis of the transcriptional variation at a population level
within theO. sativa species. By combining population and
quantitative genetics approaches, we aim to elucidate the
genetic basis of transcriptional divergence between the
two subspecies. To this end, we generated transcriptome
data using RNA sequencing on shoot tissue for a panel of
91 diverse rice accession selected from the Rice Diversity
Panel1 (RDP1) [16–18]. Here, we show that transcrip-
tional diversity between Indica and Japonica subspecies
is consistent with diversity at the genetic level. Moreover,
we connect transcriptional differences between the two
subspecies with divergent patterns of cis-regulatory varia-
tion. This study is the first to document the transcriptional
divergence between the major subspecies of cultivated
rice at a population level, and provides insight into the
genetic mechanisms that have shaped this transcriptional
divergence.

Results
We selected 91 accessions to represent the genetic diver-
sity within Rice Diversity Panel 1 (RPD1). Using the sub-
population assignment described by Zhao et al. [16] and
Famoso et al. [17], shoot transcriptome data was gen-
erated for 23 tropical japonica, 23 indica, 21 temperate
japonica, 13 admixed, 9 aus, and 2 aromatic accessions.
Genes with low variance or expression within the expres-
sion set were filtered out, as these genes are uninformative
for downstream analyses focused on natural variation in
gene expression. A total of 25,732 genes were found to
be expressed (>10 read counts) in at least one or more
of the 91 accessions. This equates to about 46% of the
genes present in the rice genome (total of 55,986 genes in
MSUv7 build).

Divergence between the Indica and Japonica subspecies
are evident at the genetic and transcriptional levels
To examine patterns of variation within the transcrip-
tomics data, we performed principle component analysis
(PCA) of transcript levels for the 91 accessions. Prior to
PCA, lowly expressed genes were removed if they were
not expressed (<10 reads) in at least 20% of the samples.
This filtering removed approximately 33,311 genes, result-
ing in a total of 22,675 genes that were used for the prin-
cipal component analysis based on the normalized read
counts. For the genetic analysis, we used 32,849 SNPs.
PCA analysis of the expression matrix resulted in a clear



Campbell et al. BMC Genomics          (2020) 21:394 Page 3 of 16

separation between the two subspecies along PC1, sug-
gesting a significant transcriptional divergence between
Indica and Japonica (Fig. 1). The first PC accounted for
approximately 26.8% of the variation in gene expression.
While PC1 was able to differentiate between the two sub-
species at the transcriptional level, no clear clustering of
accessions was observed along other PCs (Fig. 1). These
results suggest that the two subspecies of cultivated rice
have divergent transcriptomes, but the transcriptomes
of the subpopulations are more similar. Consistent with
these results, differentiation between the subspecies was
clearly evident along PC1 using the genetic (SNP) data
alone (Fig. 1a,b). The clustering of accessions along PCs 2-
4 for the SNP data was consistent with those described by

Zhao et al. [16] (Fig. 1), and were effective in discerning
the two subpopulations in rice. These results collectively
suggest that the two subspecies are highly divergent at the
genetic and transcriptional levels.

Differential expression analysis reveals contrasting
expression between subspecies
To further explore the differences and identify genes that
display divergent expression between the two subspecies,
the 91 accessions were first classified into Indica and
Japonica-like groups, using the program STRUCTURE
with the assumption of two groups and no admixture
[19]. A total of 35 accessions were assigned to the Indica
subspecies, while 56 were assigned to the Japonica sub-

Fig. 1 Principle component analysis of markers and gene expression matrices. The top four principle components from PCA analysis of the
genotypic data are pictured in A and B to illustrate the divergence of the major subpopulations in rice. The panels in C and D summarize PCA of
expression data. PVE: percent variation explained by each component
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species. Next, a linear mixed model was fit for each
of the 26,675 genes, where subspecies was considered a
fixed effect and accession as a random effect. A total
of 7,417 genes were found to exhibit contrasting expres-
sion between the two subspecies (FDR ≤0.001, Additional
file 3). Of these genes, 4,210 (57%) showed significantly
higher expression in Japonica relative to Indica, while
3,207 (43%) showed higher expression in Indica relative to
Japonica.
This divergent expression levels observed between the

two subspecies could be the result of the presence or
absence of genes within the subspecies. To this end,
we sought to identify genes showing a presence-absence
expression variation (PAV). Genes with a read count
greater than 10 were considered as expressed and coded
as 1 while those with read counts less than 10 were coded
as 0. These genes were further filtered, so that genes that
were expressed in at least 20%, but no more than 80%
of the samples were retained for downstream analyses. A
logistic mixed effects model was fit for the 4,163 genes
meeting this criteria. In total, 1,980 genes showed evi-
dence of PAV between the two subspecies (FDR < 0.001;
Additional file 3). This analysis, enriched for genes that
were expressed at higher frequency in Japonica rice com-
pared to Indica. For instance, 1,435 genes were found
to be expressed at a significantly greater frequency in
Japonica relative to Indica, while only 545 were found
to be expressed predominately in Indica. Moreover, we
detected significant enrichment for GO terms associated
stress response (GO:00006950) and response to biotic
stress (GO:0009607), as well genes with kinase activity
(GO:0016301). Within Indica-specific genes, only a sin-
gle GO category was enriched for oxygen binding activity
(GO:0019825; Table 1). Moreover, 173 were identified
with no evidence of expression in Indica while only 18
were identified in Japonica. Collectively, these results sug-
gest that the divergence between Indica and Japonica

subspecies may be due, in part, to differences in mean
expression levels as well as presence-absence expression
variation.

Japonica subspecies exhibits reduced genetic and
transcriptional diversity
Several studies have shown that the unique domestica-
tion history of the two subspecies has resulted in large
differences in the overall genetic diversity between the
two subspecies, with Indica beingmore genetically diverse
than Japonica [2, 20–22]. We next explored the variation
in gene expression within each subspecies. Two metrics
were used to examine the differences in diversity at both
the genetic and transcriptional levels within each sub-
species: nucleotide diversity (π ) and the coefficient of
variation (CV). Diversity analyses within each subspecies
may be influenced by differences in sample size. Since the
number of Japonica accessions were greater than Indica, a
subset of 35 Japonica accessions were randomly selected
for diversity analyses. The results for the full set of 56
Japonica accessions are provided as Fig. S1.
Expression diversity was estimated using the coefficient

of variation (CV) for 22,675 genes. CV was significantly
different between the two subspecies (Wilcoxon rank
sum test, p < 0.0001; Fig. 2). The Indica subspecies
exhibited approximately 12.6% higher expression diver-
sity compared to Japonica. On average, CV in the Indica
subspecies was 3.46, while in the Japonica subspecies the
mean CV was 3.07. These results suggest that the tran-
scriptional diversity is lower in the Japonica subspecies
compared to Indica. CV estimates using the complete set
of Japonica accession were similar (CV: 3.46 and 3.10 for
Indica and Japonica, respectively; Fig. S1).
Genetic diversity within each subspecies was estimated

using π for 33,543 SNPs in randomly selected 35 Indica
and 35 Japonica accessions. Similar differences were
observed for π as CV, however the differences between

Table 1 Gene onotology (GO) enrichment analysis for genes exhibiting significant presence-absence expression variation (PAV)
(FDR < 0.001). GO enrichment was conducted using AgriGO using the MSU V7 genome build without transposable elements as a
background. GO enrichment was conducted separately for genes expressed predominately in each subspecies

Subspecies Ont. Cat. GO Description No. in input No. in background p-value FDR

Japonica P response to stress 137 4660 1.5 × 1−10 5.2 × 1−8

P response to stimulus 172 6928 1.0 × 1−7 1.7 × 1−5

P response to biotic stim. 43 1404 2.4 × 1−4 2.7 × 1−2

F oxygen binding 25 390 5.0 × 1−8 4.5 × 1−6

F nucleotide binding 92 3490 2.4 × 1−5 1.1 × 1−3

F transferase activity 120 5200 3.6 × 1−4 9.6 × 1−3

F catalytic activity 271 13508 4.2 × 1−4 9.6 × 1−3

F kinase activity 69 2699 6.4 × 1−4 9.6 × 1−3

Indica F oxygen binding 13 390 1.5 × 1−4 8.8 × 1−3
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Fig. 2 Genetic and expression diversity within Indica and Japonica accessions. a The coefficient of variation was used as an estimate of the diversity
in gene expression within each subspecies. A subset of 35 Japonica accessions were randomly selected for diversity analyses to ensure that sample
sizes were equal between the two subspecies. The vertical dashed lines represent the mean CV within each subspecies. b Site-wise nucleotide
diversity (π ) was used as an estimate of the genetic diversity within each of the subspecies using 36,901 SNPs described by [16]

subspecies was much greater (Wilcoxon rank sum test,
p < 0.0001; Fig. 2). The Indica subspecies showed a
64.7% higher nucleotide diversity (π ) compared to Japon-
ica. On average, π estimates were 0.26 for Indica and 0.17
for Japonica. These results are consistent with reports by
Huang et al. [2] and Garris et al. [23], and are in agreement
with the expression diversity reported above. Together
these data suggest that the Japonica subspecies exhibits
less genetic and transcriptional diversity compared to
Indica.

Gene expression is heritable in cultivated rice
The above analyses shows a strong differentiation between
the subspecies at transcriptional and genetic levels,
and presents a possible linkage between expression and

genetic diversity. However, the extent of variation in gene
expression that can be accounted by genetic variation is
not yet determined. To estimate the extent to which vari-
ation in gene expression is under genetic control, a mixed
model was fit to the expression of each of the 22,675 genes
and the variance between accessions was estimated. The
significance of the random between − accession term was
determined using a likelihood-ratio test. The broad-sense
heritability (H2) was estimated as the proportion of the
total variance explained by between-accession variance to
total variance. A total of 11,895 genes showed a signifi-
cant between − accession variance (FDR < 0.001; H2 ≥
0.47), which accounts for approximately 53% of the genes
expressed in at least 20% of the samples (Fig. 3a; Addi-
tional file 4). H2 ranged from 0.97 to 0.47, with 4,606

Fig. 3 Heritability of gene expression across O. sativa subspecies. Distribution of broad-sense heritability (H2) and narrow-sense heritability (h2) for
22,675 genes are pictured in panels A and B, respectfully. Bars highlighted in red indicate genes with significant genetic effects (FDR < 0.001)
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genes showing highly heritable expression (H2 > 0.75),
7,145 showing moderate H2 (0.5 < H2 ≤ 0.75), and the
remaining 146 showing low H2.
To determine the extent to which additive genetic

effects could explain variance in gene expression, a
genomic relationshipmatrix was constructed using 32,849
SNPs following VanRaden [24] and variance components
were estimated using a mixed linear model for each gene.
A total of 10,125 genes were identified with significant h2
(Additional file 4). Of these, 234 genes had highly her-
itable expression (h2 ≥0.75), while 2,750 genes showed
moderate heritability (0.5 ≤ h2 <0.75) (Fig. 3b). An addi-
tional 7,141 genes showed low narrow sense heritability
(h2 <0.5). Collectively, these results indicate that many
genes in the rice transcriptome are under genetic control.

Genetic variability of gene expression is considerably
different between subspecies
The analyses above indicate that the two subpopulations
differ at the transcriptional and genetic levels, and that for
many genes, variation in expression can be explained by
genetic effects. We next asked whether the heritability of
gene expression is different between the two subspecies.
To this end, the expression dataset was partitioned into
Indica and Japonica subsets and genes with low expres-
sion in each subspecies were removed (expressed in less
than 20% of the samples). Since the number of acces-
sions for the two subspecies are unequal, 35 Japonica
accessions were randomly sampled to ensure equal sam-
ple size, and the number of genes that were expressed in
each subspecies were counted. Here, a gene was consid-
ered as expressed if 10 or more reads mapped to the gene
in 20% or more of the samples. A total of 22,444 genes
were found to be expressed in at least 20% of the samples
for the Japonica subspecies, while 22,068 were found to
be expressed in the Indica subspecies. A large number of
genes were common to both subspecies (21,166 genes). A
total of 1,278 genes were found to be uniquely expressed
in Japonica, and 902 were found to be uniquely expressed
in Indica.
A total of 5,005 genes exhibited significant H2 in Indica

and 3,338 genes in Japonica (FDR < 0.001; Additional
file 5). For these genes, H2 ranged from 0.67 to 0.98 in
Indica and 0.67 to 0.97 in Japonica. A larger number
of genes were identified with significant additive genetic
variance, with 6,804 identified in Indica and 5,103 found
in Japonica. For these genes, narrow-sense heritability
ranged from 0.201 to 0.953 in Indica and 0.220 to 0.948 in
Japonica. Interestingly, few genes showed significant her-
itable expression in both subspecies. For instance, only
1,681 and 2,644 genes were found to have significant
H2 and h2, respectively, in both Indica and Japonica.
Moreover, a comparison of H2 and h2 between sub-
species showed that for many genes, heritability estimates

were considerably different between Indica and Japonica
(Fig. 4).
To systematically identify genes showing significant dif-

ferences inH2 or h2 (�H2 and�h2, respectively) between
subspecies, accessions were randomly partitioned into
two groups of equal size and the difference in heritability
was estimated between groups. The resampling approach
was repeated 100 times. A total of 1,860 genes showed
significant differences in H2 (p < 0.01) between the two
subspecies, with a minimum absolute difference in H2 of
0.40. Fewer genes were identified with a significant dif-
ference in h2 between Japonica and Indica (Additional
file 6). Only 1,325 genes were found with significant differ-
ences in h2 between Indica and Japonica, and the absolute
difference in h2 ranged from 0.54 to 0.95 (Fig. 4).
These differences in heritability may be due to insuffi-

cient phenotypic variation (e.g. lack of expression diver-
sity), or changes in the genetic or environmental fac-
tors that contribute to phenotypic variation. Thus, to
further examine the potential causes of the observed
differences in heritability, we quantified the expression
diversity (CV), genetic variation and environmental vari-
ation within each subspecies for genes exhibiting �H2

and �h2, as well as those with shared heritable vari-
ation. For genes exhibiting subspecies-specific genetic
variability, the loss of heritability was largely due to an
increase in environmental effects on phenotypic varia-
tion in the subspecies lacking heritability rather than loss
of phenotypic variation. This is clearly evident in Addi-
tional file 2. The mean CV for �H2 genes decreased
slightly in subspecies lacking genetic variability. How-
ever, for these same genes the proportion of phenotypic
variation that was explained by environmental effects
increased significantly in subspecies lacking genetic vari-
ability. Collectively, these results suggest that the differ-
ences in heritability exhibited between the subspecies is
driven largely by loss of genetic variability and an increase
in environmental effects rather than a loss of phenotypic
variation.
Interestingly, several genes that have been reported to

have divergent genetic variants between Indica and Japon-
ica were found within �H2 and �h2 genes. For instance,
DOPPELGANGER1 (DPL1) showed significantly higher
H2 and h2 in Indica relative to Japonica (H2: 0.92 and
0.27, respectfully, p�H2 = 0.011; h2: 0.81 and 0.17,
p�h2 = 0.004; Fig. 4e). However for DOPPELGANGER2,
the converse was true. Significantly higher H2 and h2 was
observed in Japonica relative to Indica (H2: 0.87 and 0.03,
p�H2 < 0.001; h2: 0.77 and 0, respectfully, p�h2 = 0.005;
Fig. 4f ). Mizuta et al. [25] showed thatDPL1 andDPL2 are
important regulators of Indica-Japonica hybrid incom-
patibility, and non-functional alleles arose independently
for DPL1 and DPL2 within the Indica and Japonica sub-
species respectively. Thus the results reported by Mizuta
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Fig. 4 Divergent genetic variability between subspecies. a Comparison of broad-sense heritability between Indica (H2
I ) and Japonica (H2

J ). b
Comparisons of narrow sense heritability between the two subspecies. Red colored points in A and B indicate genes with significantly heritable
expression (FDR < 0.001). Differences in broad (c) and narrow sense heritability (d) between Indica and Japonica. The difference in heritability is
calculated as H2

J − H2
I or h

2
J − h2I . e-h Standardized expression of agronomically important genes showing differences in genetic variability between

subspecies. The heritability is provided below each box plot. I: Indica, J: Japonica

et al. [25] are consistent with the divergent genetic vari-
ability in expression observed in our study. In addition to
DPL1 and DPL2, a gene that is important for the regula-
tion of shoot growth/ architecture, MOC1, also displayed
divergent genetic variability between subspecies. MOC1
showed significant differences in bothH2 and h2 (Fig. 4h).
Collectively, these results show that the two subspecies
are divergent at the transcriptional and genetic levels.
Moreover, many genes exhibit large differences in genetic
variability between the Indica and Japonica, suggesting
that these genes may be regulated by divergent genetic
mechanisms.

Joint eQTL analysis assesses cis-regulatory divergence
between subspecies
The differences in the narrow-sense heritability between

subspecies observed for some genes suggest a divergence
in the genetic regulation of these genes. Using the tran-
scriptional and genotypic data for this population, we
next sought to identify genetic variants that can explain
this divergent genetic regulation. To this end, a joint
eQTL analysis was conducted across subspecies using
the eQTL Bayesian model averaging (BMA) approach
described by Flutre et al. [26]. With this approach, the
posterior probability of specific configurations can be for-
mally tested; in other words, the probability that an eQTL
is present/active in both the Indica and Japonica sub-
species or unique to a given subspecies can be determined.
The 91 accessions were classified into Indica and Japon-
ica subspecies using STRUCTURE as described earlier,
yielding 35 Indica-type and 56 Japonica-type accessions.
eQTLs were modeled for genes showing significant H2 in
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at least one subspecies (6,307 genes) and 274,499 SNPs.
For each gene, associations were tested for SNPs within
100kb of the transcription start site. A total of 5,097 genes
were detected with one or more eQTL at an FDR of 0.05
(Additional file 7). This equates to approximately 81% of
the genes displaying heritable expression, and indicates
that a large portion of genes with heritable expression are
regulated by variants in close proximity to the gene.
To identify eQTL genes that were specific to a given

subspecies, the SNP with the highest probability of being
the eQTL was selected for each gene, and the posterior
probability for all three configurations (Indica-specific,
Japonica-specific, and across subspecies) was compared.
Of the 5,097 eQTL genes detected, 80% (4,077 genes;
3,826 unique SNPs) were detected across subspecies, 18%
(914 genes; 880 unique SNPs) were detected for Indica
accessions, and only 2% (106 genes; 103 unique SNPs)
were detected in Japonica accessions. These results indi-
cate that while a large portion of cis-eQTLs are shared
across the two subspecies of cultivated rice, many genes
are regulated by unique cis regulatory mechanisms that
are specific to the Indica subspecies.

Signatures of selection are evident among subspecies
specific eQTL
The presence or absence of cis-regulatory variants within
a given subspecies may be the result of the unique domes-
tication histories that have shaped Indica and Japonica,
and/or driven by environmental adaptation of the wild
progenitors from which they were derived. The absence
of variation at the eQTL SNP could be due to sam-
pling during differentiation of the wild progenitors or
during domestication (e.g. lost purely by chance), or
due to selective pressures imposed by the environment
or humans. In the case of selection, we expect to see
reduced genetic diversity around the eQTL compared
to the rest of the genome. To determine whether the
absence of subspecies-specific eQTL are the result of
selection, we calculated the average nucleotide diversity
(π ) in 100 Kb windows around significant subspecies-
specific eQTL within each subspecies and compared
these values to the overall average π for 100 Kb win-
dows across the genome within each subspecies using
a two-sided t-test. Comparisons within each subspecies
of π for eQTLs and the genome-wide average should
account for the inherent differences in π between the two
subspecies.
Consistent with what would be expected under selec-

tion, a significant reduction in nucleotide diversity was
observed for eQTL SNPs that were absent in a sub-
species, as well as for regions around subspecies-specific
eQTL (Fig. 5). For instance, for Indica-specific eQTL,
the average π in Japonica was approximately 22% lower
than the genome-wide average (0.138 and 0.176, respec-

tively; p < 1 × 10−15). Similarly, the average π in Indica
for Japonica-specific eQTL was about 16% lower than
the genome-wide average (0.235 and 0.279, respectively;
p = 3.85×10−10). Interestingly, slightly higher nucleotide
diversity was observed for regions around subspecies-
specific eQTL in subspecies in which they were detected
compared to genome-wide nucleotide diversity, as well
as for shared eQTL when compared to genome-wide
nucleotide diversity. Collectively, these results indicate
that the absence of eQTL within a given subspecies may
be the result of selective pressures that reduced genetic
diversity within the eQTL regions.
Given the small sample size in the current study (n

= 91) we sought to confirm these results using rese-
quencing data for a larger population of 3,024 diverse
rice accessions [27–30]. To this end, we extracted SNP
information for 3,024 rice accessions in the same 100
Kb window surrounding eQTL, and examined π within
each subpopulation for these regions. As above, π

within these regions were compared with genome-wide
averages for 100 kb windows. The 3,024 rice acces-
sions are classified into 12 subpopulations: admix (103
accessions), aromatic (76 accessions), aus (201 acces-
sions), indica1A (209 accessions), indica1B (205 acces-
sions), indica2 (285 accessions), indica3 (475 accessions),
indica-X (615 accessions), japonica-X (83 accessions),
subtropical japonica (112 accessions), temperate japon-
ica (288 accessions), and tropical japonica (372 acces-
sions). The Indica subspecies are represented by indica1A,
indica1B, indica2, indica3, and indica-X; while the Japon-
ica subspecies consists of the japonica-X, subtropi-
cal japonica, temperate japonica, and tropical japonica
subpopulations.
Consistent with the results derived from the 91 acces-

sions, π within subspecies-specific eQTL was lower in
subpopulations lacking the eQTL (Fig.6). For instance,
for the Japonica subpopulations (japonica-x, subtropi-
cal japonica, temperate japonica, and tropical japonica)
π estimates for Indica-specific eQTL were considerably
lower than those for Indica subpopulations (indica-1A,
indica-1B, indica-2, indica-3, and indica-x). The con-
verse was true for Japonica-specific eQTL, with lower π

observed in Indica subpopulations relative to Japonica.
However for the shared eQTL, π estimates were higher
than the genome-wide averages, suggesting that genetic
diversity within regions that regulate gene expression is
maintained. To identify specific loci that may have been
targeted by selection, we selected eQTL regions with an
average π within a 100 Kb window that was below the
5% quantile for genome-wide average for a given sub-
species. Consistent with the results above, we observed
a greater frequency of low diversity eQTL regions in
subspecies lacking the subspecies-specific eQTL. For
instance, approximately 11% of the 880 Indica-specific



Campbell et al. BMC Genomics          (2020) 21:394 Page 9 of 16

Fig. 5 Nucleotide diversity at cis-eQTL. a Nucleotide diversity (π ) for the most significant SNP for each cis-eQTL. The distribution of π is pictured fro
each subspecies and each eQTL type. b Distribution of π for 100 Kb windows around the most significant SNP for each cis-eQTL. Genome-wide (GW)
π was determined by randomly selecting X SNPs that were more than 100 kb from a cis-eQTL and low diversity SNPs (MAF <0.1 in both subspecies)
were removed prior to analyses. Asterisks indicate a significant differences determined via Tukey’s test between eQTL types (p < 1 × 10−8)

eQTL were found in regions of low diversity in Japon-
ica (πJap ≤ 0.0645). While for Japonica-specific eQTL,
14% (14 of the 103) eQTL regions were lying in regions
of low diversity in Indica (πInd ≤ 0.1617). However, for

shared eQTL and for subspecies in which the subspecies-
specific eQTL was detected, the converse was true. Only
a small percentage of eQTL regions were found within
regions of low diversity. For instance, approximately 3.5%
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Fig. 6 Nucleotide diversity at cis-eQTL within subpopulations for 3,053 rice accessions. Average nucleotide diversity (π ) for 100 kb regions
surrounding Indica-specific, Japonica-specific, and shared eQTL are pictured in panels A, B, and C, respectively. For each, subpopulation and class of
eQTL (e.g.Indica-specific, Japonica-specific, and shared) π was calculated for each SNP within 100 kb of the most significant eQTL SNP. π for the
eQTL windows were compared to a genome wide (GW) average in which regions with eQTL and site with low diversity (MAF <0.01 in 10 of 12
subpopulations) were excluded. Asterisks indicate significant differences between GW and eQTL regions determined using a two-sided Student’s
t-test (* p < 0.05; ** p < 0.001). Subpopulations are named following [27] (aro: aromatic; ind1A: indica-1A; ind1B: indica-1B; ind2: indica-2; indx:
indica-X; japx: japonica-X; subtrop: subtropical japonica; temp: temperate japonica; trop: tropical japonica)

of shared eQTL were found in regions of low diversity in
both Indica and Japonica, and less than 1% of subspecies
eQTL were found in regions of low diversity in the sub-
species in which they were detected. Collectively these
results suggest that selective pressures may have shaped
the cis-regulatory divergence of the Indica and Japonica
subspecies.

Discussion
The differentiation between the Indica and Japonica sub-
species of cultivated rice has been intensively character-
ized at the morphological, biochemical, and genetic levels

[2, 3, 5–12, 31–35]. However, the divergence at the tran-
scriptional levels remains understudied. Here, we provide
a comprehensive analysis of the transcriptional and cis-
regulatory divergence between the major subspecies of
rice, and show that the presence or absence of cis regula-
tory variants within the subspecies is a component of this
divergence.
The transcriptional divergence is most evident in the

large number of expressed genes showing differences in
the magnitude or frequency of expression. Of the 25,732
genes showing evidence of expression in the current
study, approximately 29% showed significant differences
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in expression levels between the two subspecies. More-
over, approximately 8% of expressed genes showed evi-
dence of presence-absence expression variation. While
few studies have examined the differences in expression
levels between diverse populations of Indica and Japon-
ica, recent studies have utilized whole genome sequencing
to shed light on the genetic differentiation between the
subspecies of cultivated rice [2, 27]. In a recent study,
Wang et al. [27] found that on average approximately
15% of all genes showed evidence of PAV between the
genomes of Indica and Japonica accessions, further indi-
cating that PAV is pervasive between the subspecies of
cultivated rice. While the number of PAV reported by
Wang et al. [27] are nearly two fold higher than those
reported in the current study, it is important to note that
only a single tissue was sampled for 91 accessions at a
single time point. Therefore, while the expression data
provides considerable insight into transcriptional varia-
tion in cultivated rice, it likely captures only a portion of
the total transcriptome given the lack of temporal and spa-
tial resolution. Moreover, Wang et al. [27] captured PAV
using 3,010 resequenced rice genomes, while the current
study utilized only a fraction of the variation of Wang
et al. [27] with RNA sequencing of 91 accessions. Thus,
increased sample size via larger populations and more
sampling within tissue and developmental context may
lead to a better agreement between PAV at the genome
and transcriptional levels.
One major challenge for genomic studies that utilize

both Indica and Japonica accessions is choosing an appro-
priate genome. While cultivated rice consists of two sub-
species, many studies that have used accessions from both
subspecies often map sequences to the Nipponbare ref-
erence genome [16, 17, 27, 30, 36]. Several studies have
highlighted structural variation both within and between
subspecies of cultivated rice. Thus, some genomic fea-
tures may not be shared between diverse accessions and
Nipponbare [10, 37]. The current study highlights many
differences between the Indica and Japonica subspecies,
but does so under the assumption that the genomes of
the two subspecies should not be too different. The over-
all high colinearity of the genomes of the two subspecies
and the ability to recover fertile F1 individuals from
Indica-Japonica hybrids suggests that this is a reasonable
assumption.

Potential causes of transcriptional divergence between
Indica and Japonica
Lower mean expression values or absence of expression
in a given subspecies may be the result of both heri-
table and non-heritable effects. The availability of high
density SNP information for RDP1 allowed us to begin
to elucidate the genetic basis of the observed transcrip-
tional divergence between the subspecies of cultivated

rice. A notable portion of genes with evidence of PAV or
DE also showed differences in genetic variability between
the subspecies (13% and 9% of DE genes showed differ-
ences in H2 and h2, respectively, and 20% and 15% of
PAV genes showed differences in H2 and h2), indicating
that for many genes, the genetic mechanisms that regulate
expression may be different between the two subspecies.
However, many genes that display divergent expression
patterns have non-significant differences in genetic vari-
ability. There are several explanations for this. For one,
the thresholds used to identify genetically divergent genes
were quite stringent. For instance, genes must have a dif-
ference in genetic variability in either the broad sense
greater than 0.4022 between subspecies to be labeled as
statistically significant, and in the narrow sense 0.5364.
Therefore, it is possible that many more DE or PAV genes
have different genetic architectures in the two subspecies,
but were missed because of the stringency of statistical
threshold. A second possibility is that many of the genes
showed divergent expression are influenced greatly by the
environment, and thus have low heritability. Thus, these
genes would be filtered out in these genetic analyses.
The heritable transcriptional divergence may be due to

genetic variants that influence gene expression and are
divergent between Indica and Japonica. These include
large structural variants (e.g. deletions, insertions, inver-
sions, and/or duplications), or SNPs that may act in cis
or trans to influence gene regulation. While high density
SNP information is available for this population and can
be leveraged to identify SNPs that regulate expression and
are divergent between the subspecies, the identification of
larger structural variants that influence expression is only
attainable through full genome sequencing, which is not
currently available for RDP1. As more genetic resources
become available for RDP1 this would be a promising
future direction to resolve the causal basis of these tran-
scriptional differences.
The availability of high density SNP information for

RDP1 allowed us to begin to elucidate the genetic basis of
the observed transcriptional divergence between the sub-
species of cultivated rice, and classify genetic effects into
those that are common between subspecies, or unique
to a given subspecies. While the eQTL-BMA approach
has proven to be a powerful framework for assessing the
specificity of eQTL for a given tissue or population, one
potential limitation of eQTL-BMA is that the framework
only allows us to model cis-eQTL. Trans-eQTLs are often
difficult to detect due the penalties associated with the
large number of statistical tests performed, and because
trans-eQTL often have small effect sizes and thus require
larger dataset for detection. Several studies in humans
have shown that cis-eQTL typically only explain 30-40%
of genetic variation in expression [38–40]. Thus, the diver-
gent regulatory variants captured in the current study only
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reflect a portion of the differences in genetic variation
between the two subspecies. Further studies are neces-
sary to shed light on the contribution of trans-regulatory
variants on the genetic differentiation between Indica and
Japonica transcriptomes.
The joint eQTL analysis facilitated the identification of

5,097 genes associated with one or more SNP in cis. For
most of these genes (81%), the cis-regulatory variant was
shared between both subspecies, indicating that much
of the cis-regulatory variation is common between the
two subspecies. This high degree of overlap is somewhat
expected. For one, both Indica and Japonica originate
from populations of the same species, Oryza rufipogon.
Moreover, crosses between Indica and Japonica often pro-
duce viable offspring, indicating a high degree of colinear-
ity and functional similarity between the genomes. Thus,
while considerable differentiation between founderOryza
rufipogon populations has been reported and further
divergence has likely occurred since domestication, the
common origin and inter-specific comparability suggests
that the transcriptional regulation and genome structure
is similar [2].

Functional significance of transcriptional divergence
The current study elucidates the transcription divergence
between the major subspecies of cultivated rice. Many
of these genes with divergent expression, genetic vari-
ability, or regulatory variation have been reported to
be underlying important agronomic traits, such as pho-
toperiod adaptation and development. Therefore these
observed differences may have potential agronomic sig-
nificance. However, further studies are necessary to deter-
mine whether these expression patterns are conserved in
other tissues or developmental stages.
Among these divergent genes, we identified three genes

(OsPhyA, OsPhyC, and OsCO3), that have been reported
to be associated with the timing of reproductive devel-
opment in response to day length that had significant
heritability in Indica only. The two phytochrome genes,
OsPhyA and OsPhyC are activated under long-day con-
ditions and repress flowering time through OsGhd7 [41,
42]. Although no studies have shown whetherOsCO3 par-
ticipates directly in the pathway involving OsPhy genes,
disruption of OsCO3 interferes with photoperiod sensi-
tivity and/or flowering time [43]. For instance, Kim et al.
[43] showed that the overexpression of OsCO3 delayed
flowering under short-day conditions. In most rice vari-
eties, short-days promote the transition from vegetative
to reproductive growth [44]. However, temperate japonica
rice varieties, which are adapted to higher latitudes have
been selected to initiate flowering in long-days to escape
the negative impact of low temperatures in autumn on
pollen fertility [45–47]. All genes showed heritable expres-
sion only in the Indica subspecies, indicating that in the

Japonica subspecies expression variation may be driven
largely by non-genetic effects. Moreover, the patterns of
genetic variability for these genes are consistent with their
potential role in the adaptation of flowering in different
environments for Indica and Japonica.
In addition to genes regulating rice phenology, sev-

eral genes were identified that have been reported to
play important roles in the regulation of shoot architec-
ture (D18, MT2b, and MOC1). For instance, two genes
dwarf 18 (D18) and Metallothionein2b (MT2b) have been
reported to regulate plant height [48, 49]. D18 encodes a
GA-β hydroxylase and is involved with GA biosynthesis.
Loss of functionmutants exhibit a severe dwarf phenotype
[48]. Interestingly, D18 was found have an Indica-specific
eQTL, but did not exhibit a difference inH2 or h2 between
the two subspecies (p = 0.046 and p = 0.19, respectively),
indicating that genetic differences may be confined to
local regions around D18.

Conclusion
The morphological and genetic differences between sub-
species of cultivated rice have been studied extensively,
however the divergence of Indica and Japonica at the
transcriptional and regulatory levels is largely unresolved.
Here, we provide, to date, the first detailed population-
level characterization of transcriptional diversity within
cultivated rice, and assess the divergence in trancriptomes
and expression variation between Indica and Japonica.We
find that many agronomically important genes exhibit dif-
ferences in expression levels, and/or cis-regulatory vari-
ation between the subspecies. These resources provided
by this study can serve as a foundation for future func-
tional genomics studies in rice and other crops, and can
be further utilized to connect gene function with natural
variation in gene expression.

Methods
Plant materials and growth conditions
This study used 91 diverse accessions from the Rice Diver-
sity Panel1 (RDP1) [16–18]. Seeds were obtained from the
USDA-ARS Dale Bumpers Rice Research Center. The 91
accessions consisted of 13 admixed, 2 aromatic, 9 aus, 23
indica, 21 temperate japonica, and 23 tropical japonica
accessions.
Seeds were dehusked manually and germinated in the

dark for two days at 28°C in a growth cabinet (Percival
Scientific), and were exposed to light (120 μmol m−2s−1)
twelve hours before transplanting to acclimate them to the
conditions in the growth chamber. The seeds were trans-
planted to 3.25" x 3.25" x 5" pots filled with Turface MVP
(Profile Products) in a walk-in controlled environment
growth chamber (Conviron). The plants were cultivated
in the absence of intentional stress conditions. The pots
were placed in 36" x 24" x 8" tubs, that were filled with
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tap water. Fours days after transplanting the tap water was
replaced with half-strength Yoshida solution [50] (pH 5.8).
The pH of the solution was monitored twice daily and
was recirculated from a reservoir beneath the tubs to the
growth tubs. The temperatures were maintained at 28°C
and 25°C in day and night respectively and 60% relative
humidity. Lighting was maintained at 800 μmol m−2s−1

using high-pressure sodium lights (Phillips).

RNA extraction and sequencing
Ten days after transplant, aerial parts of the seedlings were
excised from the roots and frozen immediately in liquid
nitrogen. The samples were ground with Tissuelyser II
(Invitrogen) and total RNA was isolated with RNAeasy
isolation kit (Qiagen) according tomanufacturer’s instruc-
tions. On-column DNAse treatment was performed to
remove genomic DNA contamination (Qiagen). Sequenc-
ing was performed using Illumina HiSeq 2500. Sixteen
RNA samples were combined in each lane. Two biological
replicates were used for each accession.

Sequence alignment, expression quantification, and
differential expression analysis
Quality control for raw reads was performed using the
package FastQC [51]. The Illumina 101-bp single-end
reads were screened and trimmed using Trimmomatic to
ensure each read has average quality score larger than
30 and longer than 15 bp, and were aligned to the rice
genome (Oryza sativa MSU Release 6.0) using TopHat
(v.2.0.10), allowing up to two base mismatches per read.
Reads mapped to multiple locations were discarded [52,
53]. The number of reads for each gene sequence was
counted using the HTSeq-count tool with the "union"
resolution mode [54]. For down-stream genetic analy-
ses, a variance stabilized transformation was performed
on normalized read counts to provide approximately
homoskedastic values in DEseq2 [55].
To identify genes that exhibited differential expres-

sion between the two subspecies, a mixed linear model
was fit that included subspecies as the main fixed effect
and accession as a random effect in lme4 [56]. This full
model was compared to a reduced model the lacked sub-
species as a fixed effect using a likelihood-ratio test. Prior
to differential expression analysis, expression levels were
quantile normalized to ensure a Gaussian distribution.
Benjamini andHochberg’s methodwas used to control the
false discovery rate, and genes with an FDR ≤0.001 were
considered differentially expressed [57].
Genes showing differences in presence-absence expres-

sion variation (PAV) was determined using a mixed-
effects logistic regression model. Briefly, for each sample
the expressed genes (number of reads >10) were assigned
1, while those with 10 or less reads were assigned a 0. A
logistic regression model was fit using the ’glmer’ func-

tion in ’lme4’ and included subspecies as a fixed effect and
accession as random [56]. The significance of the fixed
effect of subspecies was determined by comparing the full
model above with a reduced model that lacked subspecies
using a likelihood-ratio test. Benjamini and Hochberg’s
method was used to control the false discovery rate, and
genes with an FDR ≤0.001 were considered as having
presence-absence expression variation [57].

Subspecies classification
The 91 accessions were classified into two subspecies
using the software STRUCTURE [19]. Briefly, the soft-
ware was run using the 44k SNP data, assuming two
subpopulations (K=2), with 20000 MCMC replicates and
a burn-in of 10000 MCMC replicates.

Expression and genetic diversity analyses
Principle component analysis of gene expression was con-
ducted for the 91 accessions using 22,675 genes after
variance stabilizing transformation. For, PCA of SNP data
the 44k dataset described by Zhao et al. [16] was used.
SNPs with a MAF <0.10 were removed prior to PCA
analysis.
The coefficient of variation (CV) was used to estimate

the diversity in gene expression within the Indica and
Japonica subspecies. Prior to estimating CV genes with
low expression (i.e. those with read counts of≤10 in≥20%
of the samples) were removed, leaving a total of 22,503
genes in Japonica and 21,719 genes in Indica. For the esti-
mation of π , SNPs were extracted for each subspecies and
SNPs with MAF < 0.05 were excluded. In total 201,891
SNPs were retained for Indica and 161,715 for Japonica.
π was estimated at each SNP using the site-pi function in
VCFtools [58].

Heritability estimates
Heritability, both in the broad (H2) and narrow sense
(h2), was estimated across subspecies for 22,675 genes that
were expressed in both Indica and Japonica. To estimate
H2 a mixed model was fit using lme4 where accession
was considered a random effect, and significance of H2

was assessed using a restricted likelihood-ratio test in
the RLRTsim package [56, 59]. Benjamini and Hochberg’s
method was used to control the false discovery rate, and
genes with an FDR ≤0.001 were considered to have signif-
icant genetic variability [57]. To assess hertiability in the
narrow sense (h2) a mixed model was fit in asreml-R [60].
Briefly, a genomic relationship matrix (G) was estimated
according to [24] using the approximately 36,901 SNPs
described by Zhao et al. [16]. G is estimated asG = ZcsZcs′

m ,
where Zcs is the centered and scaled marker matrix and
m is the number of markers. A likelihood-ratio test was
used to assess significance and Benjamini and Hochberg’s
method was used to control the false discovery rate. Genes
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with an FDR ≤0.001 were considered to have significant
genetic variability [57].
Heritability was assessed within subspecies using the

same approaches as described above. However, due to
the unequal sample size for the Indica and Japonica sub-
species, a random set of 35 Japonica accessions were
selected. Genes showing low expression (< 10reads in
< 20% of samples) in either subspecies were removed
prior analysis, leaving 22,444 genes in Japonica and 22,068
genes in Indica.

Assessing differences in genetic variability between
subspecies
To identify genes showing significant differences in
genetic variability (H2 or h2) between subspecies, a per-
mutation approach was used. Here, the 91 accessions
were randomly partitioned into two groups of equal
size (35 accessions each). Heritability was estimated as
described above and the difference in heritability between
each group was calculated. The resampling approach was
repeated 100 times for bothH2 and h2. This process effec-
tively estimated a null distribution of�H2 and�h2 values.
The heritability estimates for each subspecies was used to
calculate the differences in H2 and h2 between the two
subspecies as �H2 = H2

J − H2
I or �h2 = h2J − h2I . These

values were compared with the null distribution to assess
significance.

Joint cis-eQTL analysis
eQTLs were jointly detected using the eQTL-BMA
(Bayesian model averaging) described by Flutre et al. [26]
for 26,675 genes and 274,499 SNPs (MAF >0.10) [61].
Prior to eQTL mapping BLUPs for each gene was cal-
culated and the gene expression level of each gene was
transformed into the quantiles of a standard Normal dis-
tribution with ties broken randomly. To control for the
effects of population structure the first four PCs derived
from PCA analysis of 44k SNP dataset were included
in the linear model. Briefly, to identify eQTL and con-
trol false discovery rate (FDR) a gene-level permuta-
tion approach was used within the eQTL-BMA software.
Using the eqtlbma_bf program, 10,000 permutations were
performed with the following settings: –maf 0.1, –nperm
10000, –trick 1, –tricut 10 and –error uvlr. Genes were
considered to have an eQTL if the FDR < 0.05. These
permutations were used to estimate π0, the probability for
a gene to have no eQTL in any subspecies. Here, expres-
sion from both Japonica and Indica samples were ana-
lyzed together with the option –error uvlr specified. Next,
a hierarchical model with an expectation–maximization
algorithm was used to estimate hyper-parameters and
configuration probabilities using the eqtlbma_hm pro-
gram. These configurations were Indica-specific, Japon-
ica-specific, and present in both subspecies. Lastly, the

eqtlbma_avg_bfs program was run to obtain (i) the pos-
terior probability (PP) of a gene to have an eQTL in at
least one subspecies, (ii) PP for a SNP to be the causal
SNP for the eQTL, (iii) PP for the SNP to be an eQTL,
(iv) PP for the eQTL to be present in one subspecies, and
(v) PP for the eQTL to be present for a specific configu-
ration. SNP-gene pairs were determined to be specific to
a given subspecies or shared if the PP > 0.5 for a given
configuration.

Detecting evidence of selection at cis-eQTL
To determine whether the absence of an eQTL was due
to of selection, first SNPs from the HDRA dataset within
100kb of each significant eQTL were extracted for the 91
accessions [61]. For each SNP, nucleotide diversity was
determined using the site-pi function in VCFtools and
was averaged across the 100kb window [58]. Secondly, a
genome-wide diversity level was determined for each sub-
species. Here, SNPs that were within 100kb of an eQTL
were excluded, as well as those that exhibited low diversity
in both subspecies (MAF <0.1 in both Indica and Japon-
ica). Nucleotide diversity was determined as described
above for each SNP, and the average was taken for 100kb
windows. For each class of eQTL (e.g. Indica-specific,
Japonica-specific, and shared), a two-sided Student’s t-
test was performed to assess whether the mean π was dif-
ferent from the genome-wide average for each subspecies
and class of eQTL.
A similar approach was taken for the 3kg data [30]. For

each eQTL SNP, all SNPs within 100kb of the eQTL SNP
was extracted from the 4.8M core SNP data. The MAF
was determined for each of the 12 subpopulations in the
3kg data, and SNPs that had low diversity (MAF <0.01)
in 10 of the 12 subpopulations were excluded from fur-
ther analyses. As above, π was calculated for each site.
An average π was determined for each subpopulation at
each eQTL by taking the average π across the 100kb win-
dow. To obtain a genome wide average, eQTL regions
were excluded and π was obtained for each subpopu-
lation by averaging π across the 100kb region. Finally,
as above a two-sided Student’s t-test was performed
to assess whether the mean π was different from the
genome-wide average for each subpopulation and class
of eQTL.
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