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results suggest that the WSI-Gomp captures shoot growth 
trajectories in contrasting water regimes; however, other 
factors not accounted for in the growth model also influ-
ence observed PSA values.

Leveraging the growth model for biological inference

The WSI-Gomp model provides a means to model PSA tra-
jectories as a function of declining soil water content and 
allows the inflection point in growth curves to be estimated 
using observed WSI values. With this in mind, we next sought 
to determine what observable characteristics influence the 
timing of this inflection point in drought conditions. To 
this end, we calculated the TOI for each plant in drought 
by determining the earliest time in which the (t–WSI α) 
component of the model became positive (Supplementary 
Dataset S2). As expected, the predicted TOIs were lower 
in drought conditions compared with control, indicating 
that the inflection of the growth curve occurs early under 
drought conditions compared with well-watered conditions 
(Fig. 4A). TOI in drought-treated plants ranged from 8 d to 
16 d of imaging, while in control plants TOI values ranged 
from 14 d to 20 d.

To determine how observable phenotypes influenced TOI, 
the predicted TOI values were compared with WU, PSA, and 
the ratio of these values in drought and control (indicated by 
the subscript ‘dr’ meaning drought response) over the course of 
the experiment. Relationships were assessed using Spearman’s 
correlation with a 3 d sliding window (Fig. 4B, C). In drought 
conditions, we observed a negative relationship between TOI 
in drought (TOID) and PSA in both control and drought con-
ditions (PSAC and PSAD, respectively), indicating that larger 
plants tend to have earlier retardation of shoot growth rate 
(Fig. 4B). The relationship between TOID and PSAD became 
weaker as the soil water declined and drought became more 
severe. This trend is probably because at these time points 
shoot growth in large plants was likely to have already been 
repressed by drought. Similar, albeit slightly stronger, negative 
correlations were observed between WU in control (WUC) 
and TOI in drought (TOID). An interesting trend was observed 
for WUD and TOID. At early time points (e.g. days 0–14) a 
negative correlation was observed between TOID and WUD. 
However, around days 15–18, this trend is reversed completely, 
with a positive correlation observed between WUD and TOID. 
As expected, TOID showed a positive relationship with PSAdr 
(i.e. the ratio of PSA in drought to control), indicating that 
accessions with early inflection points tend to show a larger 
reduction in PSA under drought relative to control.

Similar trends were observed in control conditions; how-
ever, the values of the correlation coefficients were different 
compared with drought (Fig.  4C). A negative relationship 
was observed between TOI in control (TOIC) and PSA in 
control (PSAC), which is consistent with the relationship 
observed for TOID and PSA. However, TOIC and PSAC 
showed a very weak relationship, with a slight negative cor-
relation during initial time points and a very weak positive 
relationship observed at later time points. Consistent with 
drought conditions, the relationship between WUC and 

TOIC showed a strong negative correlation. Moreover, the 
correlation between TOIC and WUD was negative at early 
time points and positive at later time points, which is similar 
to the trend observed between TOID and WUD. Although 
the interpretation of α and TOI in control conditions is not 
very straightforward because plants were grown in the ab-
sence of water stress, the observed correlation suggests that 
these parameters may have a similar interpretation to that in 
drought conditions.

Fig. 4.  Distribution and interpretation of predicted time of infection. (A) 
The distribution of time of inflection (TOI) values in control and drought 
conditions. Correlation between time of inflection in control (B) and drought 
(C), and empirical observations for projected shoot area (PSA) and water 
use (WU). WU for a given day is calculated as the difference in soil water 
content from the previous day and soil water content on the current day. 
In cases where the plant received water (e.g. control plants), pot weights 
after watering were used to calculate soil water content values for the 
previous day, and pot weights prior to watering were used for soil water 
content values for the current day. Spearman’s correlation was performed 
using a 3 d sliding window. (This figure is available in color at JXB online.)
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Genome-wide association provides insight into loci 
influencing shoot growth trajectories

Model parameter estimates for the WSI-Gomp model were 
obtained using a hierarchical Bayesian framework, wherein the 
growth model is fit in the first level, and in the second level 
an EBL approach is used to predict marker effects from model 
parameters. Thus, this information can be leveraged to iden-
tify QTLs and potential candidate genes that may influence 
shoot growth trajectories in response to water deficit. To this 
end, we sought to utilize the inferred marker effects to iden-
tify genomic regions that regulate model parameters and influ-
ence dynamic shoot growth trajectories in response to water 
availability. The absolute values of inferred marker effects are 
provided in the Manhattan plots in Fig. 5 and Supplementary 
Dataset S3. Since obtaining P-values from Bayesian approaches 
is non-trivial, we report loci and candidate genes for the top-
20 single nucleotide polymorphisms (SNPs) ranked based on 
the absolute value of marker effects (|β|).

The model parameters r and α in both control and drought 
conditions exhibit a polygenic genetic architecture. We 

identified several markers with small contributions to the par-
ameter values. Although the model parameters α and r showed 
a polygenic architecture, several notable genes were identified 
within the regions defined by SNPs with relatively larger ef-
fects (Supplementary Dataset S4). For instance, at ~6.7 Mb on 
chromosome 1, a gene encoding an osmotin protein (OSM34) 
was found ~75 kb upstream of the top SNP associated with 
α in drought within this region. Osmotin proteins play a 
role in plant biotic and abiotic stress responses, particularly 
drought stress (Narasimhan et  al., 2009; Sharma et  al., 2013). 
Additionally, a membrane-bound protein involved in chilling 
tolerance, COLD1, was found ~27 kb downstream of the SNP 
with the largest effect on chromosome 4 for α in drought (Ma 
et al., 2015). The presence of these two genes known to be in-
volved in abiotic stress responses warrants further investigation.

The parameter PSAmax showed a simpler genetic archi-
tecture in control and drought conditions. In control con-
ditions, one large QTL was identified on chromosome 4 
with the SNP, with the largest effect located at ~31.4 Mb on 
chromosome 4. Within this region, a gene involved with the 
regulation of polar auxin transport, Narrow Leaf1 (NAL1), 

Fig. 5.  Genomic regions influencing model parameters. Predicted marker effects are shown for each of the WSI-Gomp model parameters. (A–C) Marker 
effects for model parameters fit to growth trajectories in control conditions; (D–F) marker effects for drought conditions. The absolute value of predicted 
marker effects (|β|) is shown on the y-axis. (This figure is available in color at JXB online.)
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was identified. Several studies have reported that variants 
in the NAL gene have pleiotropic effects and alter plant 
vascular patterning, spikelet number, leaf size, root system 
architecture, and shoot biomass (Qi et al., 2008; Fujita et al., 
2013). In drought conditions, several QTLs were identi-
fied for PSAmax, with notable peaks located on chromo-
somes 1, 2, 4, and 8. The SNP with the largest effect was 
located at ~21 Mb on chromosome 8. Within this region, 
a gene known to regulate flowering time under short-day 
conditions was identified, GF14c (Purwestri et  al., 2009). 
Moreover, a second gene known to influence biomass 
and seed size, OsMPS, was identified on chromosome 2 at 
~24.5 Mb (Schmidt et al., 2013). Since PSAmax is a param-
eter that describes the maximum biomass for each accession, 
the presence of genes known to regulate flowering time and 
biomass is promising and suggests that this parameter is bio-
logically meaningful.

Elucidating the genetic loci influencing time of inflection 
in contrasting water regimes

In addition to the parameters explicitly defined by the model, 
TOI can also be considered an additional phenotype that can 
be analyzed using conventional GWAS frameworks. With this 
in mind, we sought to identify QTLs that were associated with 
TOI using a Bayesian whole-genome regression approach 
(Supplementary Dataset S3). Estimates for model parameters 
were combined with observed environmental covariates to 
solve for the TOI for each accession in drought and control 
conditions. Marker associations with TOI were assessed using 
a GWAS approach that accounted for the ordinal response 
variable, and results are discussed in the context of the top-20 
ranked SNPs based on |β| (Fig. 6).

GWAS for TOI in control conditions showed that many 
SNPs have a small effect on the phenotype, indicating a 
complex genetic architecture for TOI in control conditions 
(Fig. 6A). However, for drought conditions, GWAS revealed 
two notable regions characterized by SNPs with relatively 
larger effects (Fig. 6B). The first peak was identified at ~27 Mb 
on chromosome 2, while the second peak was located at 
22.9 Mb on chromosome 11.

Discussion

Drought tolerance during the vegetative growth stage is most 
simply defined as the ability to maintain growth under water 
deficit. It is determined by the amount of water available to 
the plant and how efficiently the water is used to gain biomass. 
In terminal drought environments, where a fixed amount of 
water is available during the early season, the ability to main-
tain growth will be dependent on how well the plant can 
manage these resources throughout the season. Thus, when 
studying drought tolerance, especially in terminal drought en-
vironments, it is important to jointly consider these factors. 
In the current study, we imposed a severe drought stress by 
completely withholding water for a period of 20 d (or until 
pots reached 20% FC). The effects of this severe stress were 

apparent soon after withholding water, as drought-stressed 
plants showed a significant reduction in shoot biomass after 4 
d compared with control plants (Fig. 2).

Given the importance of accounting for water availability 
when modeling temporal shoot growth trajectories, we devel-
oped a growth model that jointly models shoot biomass and 
soil water content. While the model parameters themselves can 
be used to describe characteristics of the growth curve and 
provide insight into the processes that influence shoot growth, 
the model can also be leveraged for additional biological in-
ferences. For instance, we used genotype-specific parameter 
estimates to determine the point in which the growth rate 
begins to decline (i.e. TOI). While this information can also 
be obtained with the classical Gompertz growth model, the 
WSI-Gomp model leverages both time and temporal soil 
water availability while the former only utilizes time. Since the 
time values are standardized to be on the same scale as the WSI 
with the WSI-Gomp model, this metric can be interpreted in 
two ways: (i) the time in which the growth rate begins to de-
cline; or (ii) the soil water content value that begins to repress 
growth. Regardless of the interpretation, this approach pro-
vides a means to assess drought sensitivity while accounting for 
variation in soil water content between plants.

Joint modeling suggests a trade-off between vigor and 
drought tolerance

The TOI provided biological insight into the relationship 
between plant size or vigor and morphological responses to 
a severe water deficit. Temporal correlation analyses between 

Fig. 6.  Manhattan plots for time of inflection (TOI). GWAS was conducted 
using TOI values in control (A) and drought conditions (B). Each point 
indicates an SNP marker, and the y-axis shows the absolute value of 
predicted marker effects (|β|).(This figure is available in color at JXB online.)
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TOI and morphological and physiological responses re-
vealed that large, vigorous plants tend to have an earlier de-
cline in growth rate under severe drought conditions (Fig. 
4). Moreover, these plants tend to have high water demands 
in control conditions, and quickly exhaust soil water re-
sources in drought conditions. The link between early 
vigor and drought responses has been studied extensively. 
Although some studies suggest that early vigor is advan-
tageous in drought-prone environments, these benefits are 
highly dependent on the type of drought stress that is preva-
lent in these regions (Tardieu, 2011). A study by Kamoshita 
et  al. (2004) evaluated six rice accessions under short and 
prolonged drought and examined the relationship between 
root system architecture, osmotic adjustment, and biomass 
production. They found that highly vigorous accessions 
rapidly developed a dense root system and extracted water 
quickly, but were also more sensitive to prolonged drought 
stress compared with low vigor genotypes. However, these 
plants tended to recover more quickly after rewatering com-
pared with low vigor accessions. A  more recent study by 
Rebolledo et al. (2012) found similar results and suggested 
that vigorous accessions also quickly exhaust starch reserves 
under prolonged drought, resulting in a greater decline in 
biomass production compared with less vigorous accessions. 
Collectively, these studies support the observed negative 
correlation between plant size and drought sensitivity (as 
assessed with TOI), and suggest a trade-off between vig-
orous growth and the maintenance of growth in prolonged 
drought stress. Further studies are necessary to determine 
whether these relationships can be decoupled, or to identify 
the optimal balance between these two attributes.

Leveraging the genome-enabled growth model for 
candidate gene discovery

The hierarchical Bayesian framework developed by Onogi 
et al. (2016) provides a powerful approach to improve the es-
timation of model parameters and to estimate the genomic 
contributions to the model parameters. Since the model 
parameters are regressed on genome-wide SNP markers, 
this framework provides a means to identify important loci 
that influence trait trajectories (i.e. GWAS). While the initial 
study by Onogi et al. (2016) showed both applications of the 
approach, their primary objective was genomic prediction. 
Here, we leveraged the genome-enabled growth modeling 
approach to identify genomic regions that influence dy-
namic drought responses.

Many of the model parameters show a complex genetic 
architecture characterized by many loci with small effects 
(Fig. 5). However, several notable regions exhibiting relatively 
large effects were identified that harbored potential candi-
date genes. For instance, two notable peaks were identified on 
chromosomes 1 and 4 for the parameter α in drought con-
ditions (Fig. 5F). Both regions harbored candidate genes that 
have been reported to regulate drought and/or osmotic stress 
responses in plants. The region on chromosome 4 harbored 
a gene that is known to regulate chilling tolerance in rice, 
COLD1 (Ma et al., 2015). COLD1 was shown to be involved 

with the Ca2+ signaling response to cold stress. In Arabidopsis, 
the COLD1 orthologs, GTG1 and GTG2, are membrane-
bound abscisic acid receptors (Pandey et  al., 2006, 2009). 
However, COLD1 exhibits GTPase activity that is absent in 
GTG1/2 (Ma et  al., 2015). Thus, further studies are neces-
sary to determine whether COLD1 participates in drought 
responses.

In addition to the candidate genes associated by model 
parameters, whole-genome regression performed with TOI 
in drought conditions revealed a potential role for additional 
genes in the genetic regulation of the timing of growth re-
sponses to drought (Fig. 6). An aquaporin gene, OsPIP1;1, was 
identified within a prominent peak on chromosome 2 associ-
ated with TOI in drought conditions. Aquaporins are a large 
family of proteins that were initially reported to act as water 
transporters, but have since been shown to also transport CO2 
and H2O2 (Dynowski et al., 2008; Uehlein et al., 2003; Bienert 
and Chaumont, 2014; Maurel et  al., 2015; Wang et  al., 2016; 
Rodrigues et  al., 2017). Aquaporins have received consid-
erable attention as a potential target to modify whole-plant 
water transport and improve water status during drought stress 
(Sadok and Sinclair, 2009; Devi et  al., 2012; Choudhary and 
Sinclair, 2014; Schoppach et  al., 2014; Grondin et  al., 2016). 
Work by Grondin et al. (2016) showed that aquaporins account 
for ~85% of root hydraulic conductivity in rice under drought 
stress, and demonstrated that the expression of PIP1;1 is in-
duced by drought stress.

Concluding remarks

Improving drought tolerance in rice is a challenging objective. 
Efforts to improve drought tolerance are hindered by the 
heterogenity in drought-prone environments, the breadth and 
complexity of traits underlying drought adaptation, and the dif-
ficulty in characterizing large populations for these traits. Recent 
advances in phenotyping technologies have provided an ef-
fective means to measure morpho-physiological traits frequently 
throughout the growing season, and provide plant breeders and 
geneticists with dense phenotypic data describing complex re-
sponses. However, these technological advances must be coupled 
with frameworks that accommodate these multidimensional data 
sets, while providing a means to leverage high density geno-
typic data to predict phenotypes and novel biological inference. 
In this context, the genome-enabled growth model proposed 
is a significant advancement towards addressing this need. The 
WSI-Gomp model provides a simple, biologically meaningful 
framework that can describe complex temporal responses using 
few parameters. Moreover, since genome-wide markers are used 
to estimate model parameters, the inferred marker effects can be 
used to identify genes that may contribute to these responses, 
estimate genetic values for model parameters for known individ-
uals, as well as predict the phenotypes for new, uncharacterized 
individuals. Thus, these data can both be leveraged for genetic 
inference of complex drought responses, and make selections 
based on model parameters. This study is the first to leverage a 
genome-enabled growth model for genomic inference in rice, 
and provides novel insights into the basis of dynamic growth re-
sponses to drought stress.
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Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Predicted shoot growth trajectories from the WSI-

Gomp model with varying model parameters.
Dataset S1. Raw phenotypic data for all 349 accessions used 

to fit the WSI-Gomp model.
Dataset S2. Model parameter and time of inflection estimates 

for all 349 accessions obtained from the WSI-Gomp model.
Dataset S3, Marker effects for GWAS for model parameters 

and time of inflection.
Dataset S4. Candidate genes for model parameters and time 

of inflection.

Data availability

All data and codes used in this study can be accessed at https://
github.com/malachycampbell/RiceCGM/tree/master.
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