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Abstract

Elucidating genotype-by-environment interactions and partitioning its contribution to phenotypic variation remains a 
challenge for plant scientists. We propose a framework that utilizes genome-wide markers to model genotype-specific 
shoot growth trajectories as a function of time and soil water availability. A rice diversity panel was phenotyped daily 
for 21 d using an automated, high-throughput image-based, phenotyping platform that enabled estimation of daily 
shoot biomass and soil water content. Using these data, we modeled shoot growth as a function of time and soil 
water content, and were able to determine the time point where an inflection in the growth trajectory occurred. We 
found that larger, more vigorous plants exhibited an earlier repression in growth compared with smaller, slow-growing 
plants, indicating a trade-off between early vigor and tolerance to prolonged water deficits. Genomic inference for 
model parameters and time of inflection (TOI) identified several candidate genes. This study is the first to utilize a 
genome-enabled growth model to study drought responses in rice, and presents a new approach to jointly model dy-
namic morpho-physiological responses and environmental covariates.
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Introduction

Rice is one of the most important food crops and is a major 
source of food security for >3.5 billion people worldwide. 
Adequate water availability is essential for proper vegetative 
growth and grain development. Approximately 40 Mha of 
rainfed rice is grown worldwide, with the majority of pro-
duction being concentrated in developing nations (Singh and 
Singh, 2000). Erratic precipitation events, as well as the in-
creased competition for fresh water for non-agricultural uses, 

has become a major constraint for rice production (Korres 
et al., 2017).

Given the socioeconomic impacts of water limitations, 
improving drought tolerance is a major target for breeding 
programs. However, the multiple and often unpredictable 
drought stress scenarios in drought-prone environments 
makes improvement of drought tolerance in rice challenging. 
Further, traits that are important for adaptation to limited 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/71/18/5669/5856150 by C

ornell U
niversity Library user on 26 January 2021

http://creativecommons.org/licenses/by/4.0/
mailto:campbell.malachy@gmail.com?subject=


5670  |  Campbell et al.

water availability, particularly morpho-physiological traits, 
are complex and often have low heritability (Kamoshita 
et  al., 2008). These characteristics impede the discovery of 
loci that confer large effects on the phenotype, and limit the 
utility of marker-assisted selection for improving drought 
tolerance.

Recent advances in phenomics and genomics have offered 
new tools for discovering and quantifying traits associated with 
drought adaptation and their genetic basis (Berger et al., 2010; 
Furbank and Tester, 2011; Araus and Cairns, 2014). Access to 
high-throughput, image-based phenomic systems in the public 
sector has allowed researchers to non-destructively measure 
traits of interest for large populations in highly controlled 
greenhouse or field environments. These platforms provide 
an effective means to study temporal developmental and/or 
physiological processes and assess how these processes are influ-
enced by environmental factors such as drought (Berger et al., 
2010). Several studies have leveraged functional approaches to 
describe these temporal phenotypes using simple mathematical 
models, and leveraged genetic mapping approaches to identify 
loci that may affect trait trajectories (Ma et al., 2002, Malosetti 
et al., 2006; Das et al., 2011; Bac-Molenaar et al., 2015, 2016; 
Campbell et al., 2015).

In addition to the temporal phenotypes generated with 
these platforms, many field- and greenhouse-based platforms 
also collect high-resolution environmental data (Tardieu et al., 
2017). These data provide additional insight into how temporal 
physiological and/or morphological responses are influenced 
by environmental conditions. Several studies have used these 
traits as covariates in the conventional genomic prediction 
frameworks to increase prediction accuracies for agronomic 
traits such as yield (Aguate et  al., 2017; Montesinos-López 
et al., 2017; Sun et al., 2017; Krause et al., 2019). However, with 
these approaches, secondary phenotypes are utilized as linear 
predictors without directly considering how they give rise to 
the observed phenotype.

Process-based eco-physiological models seek to predict out-
comes by explicitly modeling the interaction of biological pro-
cesses with environmental covariates (Batchelor et  al., 2002; 
Ittersum et  al., 2003; Parent and Tardieu 2014). However, a 
major disadvantage of these models is that genotypic variation 
is often unaccounted for or not optimally utilized in the pre-
dictions (Onogi et al., 2016). Thus, their application in genomic 
prediction or inference studies is limited. Several studies have 
sought to integrate crop growth models with established quan-
titative genetic frameworks (Technow et al., 2015; Onogi et al., 
2016; Wang et  al., 2019). For instance, Technow et  al. (2015) 
used an approximate Bayesian computation framework to in-
tegrate crop growth modeling and whole-genome prediction 
to predict yield in maize. They showed a clear advantage of the 
genome-enabled crop growth model over the conventional 
genomic prediction approach using simulated data. More re-
cently, Onogi et al. (2016) leveraged a crop growth model to 
predict heading date in rice that integrated the phenological 
model proposed by Yin et  al. (1997) and implemented by 
Nakagawa et al. (2005) with a whole-genome prediction using 
a hierarchical Bayesian approach. The hierarchical Bayesian 
approach outperformed conventional genomic prediction 

models as well as approaches that fit the crop growth model 
and genomic prediction model in separate steps. The advan-
tage of the integrated approaches proposed by Technow et al. 
(2015) and Onogi et  al. (2016) is that model parameter es-
timates are informed by the genomic relationships among 
the accessions, which can improve the accuracy of the par-
ameter estimates. Moreover, since these approaches are based 
on a Bayesian whole-genome regression framework, marker 
effects are predicted, facilitating marker-level associations with 
model parameters. However, to date no studies have leveraged 
these genome-enabled crop growth models for biological in-
ference, or to elucidate the genetic loci that influence model 
parameters.

In the current study, we sought to leverage the frameworks 
developed by Onogi et al. (2016) to study the effects of water 
deficit on shoot growth trajectories for a diverse set of rice 
accessions. To this end, accessions were subjected to drought 
stress [20% field capacity (FC)], and shoot growth was quan-
tified over 21 d using an image-based phenomics platform. 
A corresponding set of accessions was maintained under op-
timal water conditions (90% FC). The automated phenotyping 
system allowed daily water use (WU) for each accession and 
soil water content to be estimated. Together, these data were 
used to develop a novel growth model that models shoot 
growth trajectories as a function of soil water content and 
time. This growth model was integrated into the hierarchical 
Bayesian framework of Onogi et  al. (2016) to elucidate the 
genes underlying model parameters. This approach provides 
a biologically meaningful framework that simultaneously (i) 
models the inter-relationship between growth rate and soil 
water availability; (ii) estimates quantitative trait loci (QTLs) 
effects for model parameters; and (iii) provides genetic values 
for model parameters that can be used for genetic evaluation.

Materials and methods

Plant materials and greenhouse conditions
A subset of the Rice Diversity Panel 1 was used in this study (Zhao 
et al., 2011). Seed preparation was performed following Campbell et al. 
(2015). Briefly, seeds were surface sterilized with Thiram fungicide and 
were germinated on moist paper towels in plastic boxes for 3 d. Three 
uniform seedlings were selected and transplanted to pots (150 mm diam-
eter×200 mm height) filled with ~2.5 kg of UC Mix. Square containers 
were placed below each pot to allow water to collect. Temperatures in 
the greenhouses were maintained at 28/26.0 °C (day/night), and relative 
humidity was maintained at ~60% throughout the day and night.

Experimental design
A total of 378 accessions were phenotyped at the Plant Accelerator, 
Australian Plant Phenomics Facility, at the University of Adelaide, SA, 
Australia in three independent experiments performed from February to 
April 2016. A subset of 54 accessions were replicated twice in each ex-
periment. The 54 accessions were selected based on seed availability and 
uniform germination. Each experiment consisted of 432 pairs of pots 
(378 and the 54 replicated accessions). Accessions were randomly assigned 
to each pair of pots, and water regimes were randomly assigned within 
pairs. Pairs were randomly partitioned in two smarthouses, each of which 
consisted of 24 lanes.

Seven days after transplantation (DAT) to soil, plants were thinned to 
one seedling per pot, and two layers of blue mesh were placed on top 
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of the soil to reduce soil water evaporation. At 11 DAT, the plants were 
loaded on the imaging system and were watered to 90% FC. Water was 
withheld from one of the two pots for each accession beginning at 13 
DAT. Water was withheld until the end of the experiment or until the FC 
reached 20%, after which the plants were maintained at 20% FC.

Image analysis
The plants were imaged each day from 13 to 33 DAT using a visible 
[red–green–blue (RGB) camera; Basler Pilot piA2400-12 gc, Ahrensburg, 
Germany] from two side view angles separated by 90° and a single top 
view. The LemnaGrid software was used to extract ‘plant pixels’ from 
RGB images. The image analysis pipeline is identical to that described 
in Campbell et al. (2018). ‘Plant pixels’ from each of the RGB images for 
each plant and time point were summed and were used as a proxy for 
shoot biomass, which is referred to as projected shoot area (PSA). Several 
studies have shown that this metric is an accurate representation of shoot 
biomass (Golzarian et al., 2011 Campbell et al., 2015; Knecht et al., 2016). 
Outlier plants at each time point were detected for each trait using the 
1.5× interquartile range rule. Potential outliers were plotted and in-
spected visually, and those that exhibited abnormal growth patterns were 
removed prior to downstream analyses. In total, 34 plants were removed, 
leaving 2558 plants for downstream analyses. Since the genome-enabled 
crop growth model does not accommodate missing data, accessions with 
missing values were excluded from further analyses, resulting in a total of 
349 accessions being used for downstream analyses.

Modeling shoot growth as a function of time and soil 
water content
The Gompertz growth model has been used extensively to model 
asymptotic processes that exhibit a sigmoid trend (Winsor, 1932). The 
classical Gompertz model is given by PSA(t) = PSAmaxe−e

−r(t−To)
, where 

t is a vector of time values, r is the absolute growth rate, PSAmax is the 
maximum biomass (e.g. asymptote), and T0 is the inflection point in 
the growth curve where the relative growth rate begins to slow. For the 
drought conditions imposed in the current study, we expect shoot growth 
to follow an exponential trajectory during the initial time points when 
soil water is not limiting. However, as the soil dries out, the growth rate 
should slow and, eventually, when soil water content falls below some 
threshold, growth should cease completely. Thus, the basic framework 
provided by the Gomertz model should capture these expected patterns.

To model the effects of water deficit on shoot growth trajectories, we 
devised a growth model that is an extension of the classical Gompertz 
growth model. The Gompertz growth model was modified so that shoot 
growth trajectories were modeled as a function of time and soil water 
content. This model is referred to as the WSI-Gomp model in the re-
mainder of this manuscript. The WSI-Gomp model is given by

PSA(t) = PSAmaxe−e
−r(t−WSIα)

where PSAmax is a parameter that describes the maximum biomass 
achieved by the plant; r describes the absolute growth rate; t is a vector of 
standardized time values [0,1]; and α is a genotype-specific tuning param-
eter that modifies the effect of WSI on PSA. WSI is the water stress index, 
a unitless index that describes the severity of water stress, and is given by

WSI = FCt−FCCrit
FCOpt−FCCrit

FCt is the portion of FC at time t; FCCrit (critical FC) is the propor-
tion of FC in which growth ceases; and FCOpt is the proportion of FC 
that is optimal for growth. FC was calculated at each time point from 
pot weights given by the automated watering system. Since FCCrit and 
FCOpt are unknown and likely to be genotype dependent, we assumed 
that the optimal conditions for growth in rice occur when the soil is 
completely saturated (i.e. FCOpt=1), and FCCrit is equal to 0.1. Although 
these assumptions require empirical evidence to validate, they provide 
a standardized metric that describes soil water content in a decreasing 
non-linear trend that is on the same scale as the standardized time values. 

These characteristics allow PSA to be modeled as a function of time and 
soil water content using the Gompertz growth model. Figure 1 provides 
a graphical summary of the classical Gompertz and WSI-Gomp growth 
models for simulated soil water content values that would be typical for 
water-stressed plants in the current study, and Supplementary Fig. S1 
at JXB online shows the effects of varying model parameters on shoot 
growth trajectories.

Leveraging whole-genome regression to estimate model 
parameters
The ‘integrated approach’ developed by Onogi et al. (2016) uses a hier-
archical Bayesian framework to simultaneously infer growth model 
parameters and marker effects. The models were fit using the R package 
GenomeBasedModel (Onogi, 2020; https://github.com/Onogi/
GenomeBasedModel). Briefly, solutions for the growth model parameters 
are regressed on genome-wide markers, and extended Bayesian LASSO 
(least absolute shrinkage and selection operator; EBL) is used to predict 
marker effects for each of the model parameters. The regression model 
is given by

y = µ+Wβ + e

W is an n×m matrix of marker genotypes coded as –1, 0, 1, n is 
the number of accessions (349), and m is the number of markers 
(33 697); μ is the intercept for each parameter; and β is an m×1 

Fig. 1.  Graphical representation of the classical Gompertz model and the 
WSI-Gomp model. (A) The classical Gompertz growth model was used 
to generate PSA values over a 21 d period. The parameter values used 
are provided in the top left corner of the plot. The gray, vertical broken line 
indicates the inflection point (T0). (B) The WSI-Gomp growth model was 
used to generate PSA values over a 21 d period. PSA values are shown 
using dark blue points and a broken line. The light blue points and line 
indicate the WSI values over the 21 d period. WSI was calculated from 
simulated soil water content values that are typically of those experienced 
by water-stressed plants in the current study. The gray, vertical broken line 
indicates the inflection point (T0). 
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vector of predicted marker effect for each model parameter. Markers 
were obtained from RiceDiversity.org and have been described 
by Zhao et  al. (2011). The prior distribution of marker effects for 
marker i is

βi ∼ N (0, 1
τ 2
0 τ

2
i
)

τ 2i ∼ inverse− gamma(1, δ
2η2

i
2 )

δ2 ∼ gamma(φ,ω)
η2i ∼ gamma(ψ, θ)

τ  i
2 is the precision for the effect of marker i; η i

2 is the marker-specific 
shrinkage parameter for marker i; δ 2 is the global shrinkage param-
eter; and ω, ϕ, θ, and ψ are hyperparameters. Default values were used 
for hyperparameters. We assume the following for WSI-Gomp model 
parameters

PSAmax ∼ N (µPSAmax +WβPSAmax ,
1

τ 2
0,PSAmax

)

r ∼ N (µr +Wβr , 1
τ 2
0,r
)

α ∼ N (µα +Wβα, 1
τ 2
0,α

)

τ 20,p is the residual precisions for model parameter p. Moreover, for the re-
siduals, we assume N (0, 1/ τ 20)]. With the ‘integrated approach’ proposed 
by Onogi et al. (2016), model parameters are inferred using a variational 
Bayes approach in which means and variances of the growth model 
parameters are obtained using Markov chain Monte Carlo sampling and 
are used to update EBL parameters.

Genome-wide association for time of inflection
We sought to utilize the WSI-Gomp model to identify genomic loci 
that influenced the timing of the transition to a declining growth rate. 
To this end, we used model parameters obtained from the hierarchical 
Bayesian approach described above and observed WSI values to solve 
for the time of inflection (TOI). In the classical Gompertz growth 
model, PSA(t) = PSAmaxe−e

−r(t−To)
, the growth rate begins to decline 

when the (t–T0) term becomes positive (i.e. when t exceeds T0). Thus, 
T0 can be defined as the time of inflection. In the WSI-Gomp model, 
this component is given by (t–WSI α). Thus, the TOI occurs when 
t≥WSI α. Using the hierarchical Bayesian approach, we obtained esti-
mates for α for each accession in drought and control conditions, and 
used these values to solve for TOI using WSI values for each accession 
in each experiment. TOI was defined as the first day in which (t–WSI 
α) was positive. This yielded a single TOI value for each accession in 
each experiment.

These TOI values were used as a derived phenotype for further 
genome-wide association study (GWAS) analysis. The following Bayesian 
LASSO regression model was fit using the BGLR package (Pérez and 
Los Campos, 2014)

y = Xβ +Za+ e

where y = X is an incidence matrix relating the vector β of fixed ef-
fects for experiment to observations, Z is an incidence matrix relating 
the vector of random marker effects a to y, and e is the residual. Since 
the vector y is a vector of discrete TOI values, y was treated as an ordinal 
response, and a probit link function was used. In Bayesian LASSO, the 
marginal prior distribution for each marker effect is a double exponential 
function that includes an unknown parameter λ 2 with a prior distribu-
tion λ 2~gamma (r, s) (Pérez and Los Campos, 2014). BGLR sets s=1.1 by 
default and solves for r based on the prior R2 of the model. Details on the 
BL approach implemented in BGLR is provided in the package vignette. 
A Gaussian prior with mean zero and variance equal to 1×1010 was used 
for fixed effects.

Results

Image-based phenotyping captures the sensitivity of 
rice to drought stress

To examine drought responses in rice (Oryza sativa), a diver-
sity panel was phenotyped over a period of 21 d during the 
early vegetative stage using an automated high-throughput 
phenotyping platform (Supplementary Dataset S1). Control 
plants were maintained at 90% FC, while water was with-
held from drought-treated plants until a final FC of 20% was 
reached. A  t-test was carried out at each time point to de-
termine when a significant reduction in soil water availability 
was experienced. A significant difference in pot water content 
(FC) was observed from the second day of imaging (Fig. 2A; 
P<0.0024, Bonferroni’s correction with α =0.05) when the 
drought plants on average were at 90.9% FC.

The impact of drought stress on shoot growth (biomass) 
was estimated from RGB images and expressed as a digital 
metric called PSA. An ANOVA was carried out at each time 
point using the a linear model that included main effects for 
treatment and accession and the interaction between treat-
ment and accession. Significant effects for the interaction 
between accession and treatment were observed from day 16 
onward. Drought treatment had a significant effect on PSA 
beginning on the fourth day of imaging (Fig. 2B; P<0.0024, 
Bonferroni’s correction with α =0.05). Interestingly, at this 
time point drought-treated plants, on average, were at 81.9% 
FC, which is only ~12.5% below control plants. These data 
suggest that even a small limitation of water can have a 

Fig. 2.  Effect of water deficit on shoot growth. (A) Mean percentage field 
capacity in drought and control conditions over the 21 d of imaging. (B) 
Mean shoot growth trajectories (PSA) in drought and control conditions 
over 21 d of imaging. Water was withheld starting at day 1 of imaging. The 
shaded regions indicate the SD for each treatment. (This figure is available 
in color at JXB online.)
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significant impact on shoot growth in rice, thus confirming 
the high level of drought sensitivity reported for rice (Lafitte 
et al., 2004).

Defining the growth model

The Gompertz growth model has been used extensively to 
model asymptotic processes that exhibit a sigmoid trend 
(Winsor, 1932). This sigmoid/asymptotic trend is to some de-
gree visible in the mean growth trajectory in Fig. 2B. While 
the classical Gompertz model provides an intuitive framework 
to model asymptotic growth trajectories as a function of time, 
it does not accommodate environmental data, and therefore 
cannot be used to address how shoot growth varies in response 
to soil water content.

To address this limitation, we sought to modify the 
Gompertz growth model so that shoot growth trajectories 
could be modeled as a function of time and soil water con-
tent. We defined an index (water stress index, WSI) from daily 
records of soil water content for each plant that reflects the 

severity of water stress. WSI is given by WSI = FCt−FCCrit
FCOpt−FCCrit

, where FCt indicates the percentage FC at time t, FCOpt 
is the optimal percentage FC for growth, and FCCrit is the 
percentage FC at which growth ceases. Since these values 
are expected to vary depending on the genotype, we as-
sumed that growth will cease at 10% FC (FCCrit=1) and the 
growth will proceed optimally when the soil is saturated 
(FCOpt=100). This equation provides a unitless metric that 
will vary between 0 and 1, with higher values indicating 
lower water stress and lower values indicating a greater 

stress. For this metric to be introduced into the Gompertz 
growth model, we standardized the time values so that they 
ranged from 0 to 1. Finally, we introduced a third param-
eter (α) into the model that acts as a genotype-dependent 
tuning parameter and modifies the effect of WSI on growth 

rate. This new WSI-integrated model (WSI-Gomp) is given 

by PSA(t) = PSAmaxe−e
−r(t−WSIα)

. The WSI-Gomp model is 
shown in Fig. 2B.

To capture the effects of soil water deficit on growth tra-
jectories, the WSI-Gomp model was fit to growth trajec-
tories in drought and control conditions for each of the 
349 accessions using a hierarchical Bayesian approach that 
leverages the genetic relationships among lines to obtain so-
lutions for the model parameters (Onogi et al., 2016). Model 
parameter estimates for each accession were used to predict 
growth trajectories employing observed WSI values. The 
ability of the WSI-Gomp model to capture these dynamic 
responses was assessed by comparing predicted PSA values 
and observed values at each time point using two metrics: 
root mean squared error (RMSE) and Pearson’s correlation. 
Overall, the WSI-Gomp model provided a good fit to the 
observed shoot growth trajectories (Fig.  3). The correl-
ation between observed and predicted PSA values ranged 
from 0.41 to 0.87 in the control, while the correlation was 
slightly lower in drought conditions and ranged from 0.52 
to 0.75. Correlation values were lowest for early time points 
in both control and drought conditions, suggesting that pre-
dictions for these time points may be inaccurate. However, 
at later time points, there was a high agreement between 
predicted and observed values for PSA. Collectively, these 

Fig. 3.  Capturing shoot growth trajectories using the WSI-Gomp model. Observed (points) and predicted (broken line) mean shoot growth trajectories 
for each experiment under control (A) and drought (B) conditions. For both (A) and (B), Nelder–Mead optimization was used to fit the WSI-Gomp model 
to the mean shoot growth trajectories for each experiment. (C) Average correlation between predicted trajectories and observed PSA values. (D) Relative 
root mean squared error (RRMSE) between predicted trajectories and observed PSA values. RRMSE was calculated as RMSE at time t divided by the 
mean predicted values at time t. For both (C) and (D), the WSI-Gomp model was fit using the hierarchical Bayesian model, and predicted PSA values 
were compared at each time point with observed values for each accession. (This figure is available in color at JXB online.)
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results suggest that the WSI-Gomp captures shoot growth 
trajectories in contrasting water regimes; however, other 
factors not accounted for in the growth model also influ-
ence observed PSA values.

Leveraging the growth model for biological inference

The WSI-Gomp model provides a means to model PSA tra-
jectories as a function of declining soil water content and 
allows the inflection point in growth curves to be estimated 
using observed WSI values. With this in mind, we next sought 
to determine what observable characteristics influence the 
timing of this inflection point in drought conditions. To 
this end, we calculated the TOI for each plant in drought 
by determining the earliest time in which the (t–WSI α) 
component of the model became positive (Supplementary 
Dataset S2). As expected, the predicted TOIs were lower 
in drought conditions compared with control, indicating 
that the inflection of the growth curve occurs early under 
drought conditions compared with well-watered conditions 
(Fig. 4A). TOI in drought-treated plants ranged from 8 d to 
16 d of imaging, while in control plants TOI values ranged 
from 14 d to 20 d.

To determine how observable phenotypes influenced TOI, 
the predicted TOI values were compared with WU, PSA, and 
the ratio of these values in drought and control (indicated by 
the subscript ‘dr’ meaning drought response) over the course of 
the experiment. Relationships were assessed using Spearman’s 
correlation with a 3 d sliding window (Fig. 4B, C). In drought 
conditions, we observed a negative relationship between TOI 
in drought (TOID) and PSA in both control and drought con-
ditions (PSAC and PSAD, respectively), indicating that larger 
plants tend to have earlier retardation of shoot growth rate 
(Fig. 4B). The relationship between TOID and PSAD became 
weaker as the soil water declined and drought became more 
severe. This trend is probably because at these time points 
shoot growth in large plants was likely to have already been 
repressed by drought. Similar, albeit slightly stronger, negative 
correlations were observed between WU in control (WUC) 
and TOI in drought (TOID). An interesting trend was observed 
for WUD and TOID. At early time points (e.g. days 0–14) a 
negative correlation was observed between TOID and WUD. 
However, around days 15–18, this trend is reversed completely, 
with a positive correlation observed between WUD and TOID. 
As expected, TOID showed a positive relationship with PSAdr 
(i.e. the ratio of PSA in drought to control), indicating that 
accessions with early inflection points tend to show a larger 
reduction in PSA under drought relative to control.

Similar trends were observed in control conditions; how-
ever, the values of the correlation coefficients were different 
compared with drought (Fig.  4C). A negative relationship 
was observed between TOI in control (TOIC) and PSA in 
control (PSAC), which is consistent with the relationship 
observed for TOID and PSA. However, TOIC and PSAC 
showed a very weak relationship, with a slight negative cor-
relation during initial time points and a very weak positive 
relationship observed at later time points. Consistent with 
drought conditions, the relationship between WUC and 

TOIC showed a strong negative correlation. Moreover, the 
correlation between TOIC and WUD was negative at early 
time points and positive at later time points, which is similar 
to the trend observed between TOID and WUD. Although 
the interpretation of α and TOI in control conditions is not 
very straightforward because plants were grown in the ab-
sence of water stress, the observed correlation suggests that 
these parameters may have a similar interpretation to that in 
drought conditions.

Fig. 4.  Distribution and interpretation of predicted time of infection. (A) 
The distribution of time of inflection (TOI) values in control and drought 
conditions. Correlation between time of inflection in control (B) and drought 
(C), and empirical observations for projected shoot area (PSA) and water 
use (WU). WU for a given day is calculated as the difference in soil water 
content from the previous day and soil water content on the current day. 
In cases where the plant received water (e.g. control plants), pot weights 
after watering were used to calculate soil water content values for the 
previous day, and pot weights prior to watering were used for soil water 
content values for the current day. Spearman’s correlation was performed 
using a 3 d sliding window. (This figure is available in color at JXB online.)
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Genome-wide association provides insight into loci 
influencing shoot growth trajectories

Model parameter estimates for the WSI-Gomp model were 
obtained using a hierarchical Bayesian framework, wherein the 
growth model is fit in the first level, and in the second level 
an EBL approach is used to predict marker effects from model 
parameters. Thus, this information can be leveraged to iden-
tify QTLs and potential candidate genes that may influence 
shoot growth trajectories in response to water deficit. To this 
end, we sought to utilize the inferred marker effects to iden-
tify genomic regions that regulate model parameters and influ-
ence dynamic shoot growth trajectories in response to water 
availability. The absolute values of inferred marker effects are 
provided in the Manhattan plots in Fig. 5 and Supplementary 
Dataset S3. Since obtaining P-values from Bayesian approaches 
is non-trivial, we report loci and candidate genes for the top-
20 single nucleotide polymorphisms (SNPs) ranked based on 
the absolute value of marker effects (|β|).

The model parameters r and α in both control and drought 
conditions exhibit a polygenic genetic architecture. We 

identified several markers with small contributions to the par-
ameter values. Although the model parameters α and r showed 
a polygenic architecture, several notable genes were identified 
within the regions defined by SNPs with relatively larger ef-
fects (Supplementary Dataset S4). For instance, at ~6.7 Mb on 
chromosome 1, a gene encoding an osmotin protein (OSM34) 
was found ~75 kb upstream of the top SNP associated with 
α in drought within this region. Osmotin proteins play a 
role in plant biotic and abiotic stress responses, particularly 
drought stress (Narasimhan et  al., 2009; Sharma et  al., 2013). 
Additionally, a membrane-bound protein involved in chilling 
tolerance, COLD1, was found ~27 kb downstream of the SNP 
with the largest effect on chromosome 4 for α in drought (Ma 
et al., 2015). The presence of these two genes known to be in-
volved in abiotic stress responses warrants further investigation.

The parameter PSAmax showed a simpler genetic archi-
tecture in control and drought conditions. In control con-
ditions, one large QTL was identified on chromosome 4 
with the SNP, with the largest effect located at ~31.4 Mb on 
chromosome 4. Within this region, a gene involved with the 
regulation of polar auxin transport, Narrow Leaf1 (NAL1), 

Fig. 5.  Genomic regions influencing model parameters. Predicted marker effects are shown for each of the WSI-Gomp model parameters. (A–C) Marker 
effects for model parameters fit to growth trajectories in control conditions; (D–F) marker effects for drought conditions. The absolute value of predicted 
marker effects (|β|) is shown on the y-axis. (This figure is available in color at JXB online.)
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was identified. Several studies have reported that variants 
in the NAL gene have pleiotropic effects and alter plant 
vascular patterning, spikelet number, leaf size, root system 
architecture, and shoot biomass (Qi et al., 2008; Fujita et al., 
2013). In drought conditions, several QTLs were identi-
fied for PSAmax, with notable peaks located on chromo-
somes 1, 2, 4, and 8. The SNP with the largest effect was 
located at ~21 Mb on chromosome 8. Within this region, 
a gene known to regulate flowering time under short-day 
conditions was identified, GF14c (Purwestri et  al., 2009). 
Moreover, a second gene known to influence biomass 
and seed size, OsMPS, was identified on chromosome 2 at 
~24.5 Mb (Schmidt et al., 2013). Since PSAmax is a param-
eter that describes the maximum biomass for each accession, 
the presence of genes known to regulate flowering time and 
biomass is promising and suggests that this parameter is bio-
logically meaningful.

Elucidating the genetic loci influencing time of inflection 
in contrasting water regimes

In addition to the parameters explicitly defined by the model, 
TOI can also be considered an additional phenotype that can 
be analyzed using conventional GWAS frameworks. With this 
in mind, we sought to identify QTLs that were associated with 
TOI using a Bayesian whole-genome regression approach 
(Supplementary Dataset S3). Estimates for model parameters 
were combined with observed environmental covariates to 
solve for the TOI for each accession in drought and control 
conditions. Marker associations with TOI were assessed using 
a GWAS approach that accounted for the ordinal response 
variable, and results are discussed in the context of the top-20 
ranked SNPs based on |β| (Fig. 6).

GWAS for TOI in control conditions showed that many 
SNPs have a small effect on the phenotype, indicating a 
complex genetic architecture for TOI in control conditions 
(Fig. 6A). However, for drought conditions, GWAS revealed 
two notable regions characterized by SNPs with relatively 
larger effects (Fig. 6B). The first peak was identified at ~27 Mb 
on chromosome 2, while the second peak was located at 
22.9 Mb on chromosome 11.

Discussion

Drought tolerance during the vegetative growth stage is most 
simply defined as the ability to maintain growth under water 
deficit. It is determined by the amount of water available to 
the plant and how efficiently the water is used to gain biomass. 
In terminal drought environments, where a fixed amount of 
water is available during the early season, the ability to main-
tain growth will be dependent on how well the plant can 
manage these resources throughout the season. Thus, when 
studying drought tolerance, especially in terminal drought en-
vironments, it is important to jointly consider these factors. 
In the current study, we imposed a severe drought stress by 
completely withholding water for a period of 20 d (or until 
pots reached 20% FC). The effects of this severe stress were 

apparent soon after withholding water, as drought-stressed 
plants showed a significant reduction in shoot biomass after 4 
d compared with control plants (Fig. 2).

Given the importance of accounting for water availability 
when modeling temporal shoot growth trajectories, we devel-
oped a growth model that jointly models shoot biomass and 
soil water content. While the model parameters themselves can 
be used to describe characteristics of the growth curve and 
provide insight into the processes that influence shoot growth, 
the model can also be leveraged for additional biological in-
ferences. For instance, we used genotype-specific parameter 
estimates to determine the point in which the growth rate 
begins to decline (i.e. TOI). While this information can also 
be obtained with the classical Gompertz growth model, the 
WSI-Gomp model leverages both time and temporal soil 
water availability while the former only utilizes time. Since the 
time values are standardized to be on the same scale as the WSI 
with the WSI-Gomp model, this metric can be interpreted in 
two ways: (i) the time in which the growth rate begins to de-
cline; or (ii) the soil water content value that begins to repress 
growth. Regardless of the interpretation, this approach pro-
vides a means to assess drought sensitivity while accounting for 
variation in soil water content between plants.

Joint modeling suggests a trade-off between vigor and 
drought tolerance

The TOI provided biological insight into the relationship 
between plant size or vigor and morphological responses to 
a severe water deficit. Temporal correlation analyses between 

Fig. 6.  Manhattan plots for time of inflection (TOI). GWAS was conducted 
using TOI values in control (A) and drought conditions (B). Each point 
indicates an SNP marker, and the y-axis shows the absolute value of 
predicted marker effects (|β|).(This figure is available in color at JXB online.)

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/71/18/5669/5856150 by C

ornell U
niversity Library user on 26 January 2021

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa280#supplementary-data


Studying drought responses with genome-enabled growth models  |  5677

TOI and morphological and physiological responses re-
vealed that large, vigorous plants tend to have an earlier de-
cline in growth rate under severe drought conditions (Fig. 
4). Moreover, these plants tend to have high water demands 
in control conditions, and quickly exhaust soil water re-
sources in drought conditions. The link between early 
vigor and drought responses has been studied extensively. 
Although some studies suggest that early vigor is advan-
tageous in drought-prone environments, these benefits are 
highly dependent on the type of drought stress that is preva-
lent in these regions (Tardieu, 2011). A study by Kamoshita 
et  al. (2004) evaluated six rice accessions under short and 
prolonged drought and examined the relationship between 
root system architecture, osmotic adjustment, and biomass 
production. They found that highly vigorous accessions 
rapidly developed a dense root system and extracted water 
quickly, but were also more sensitive to prolonged drought 
stress compared with low vigor genotypes. However, these 
plants tended to recover more quickly after rewatering com-
pared with low vigor accessions. A  more recent study by 
Rebolledo et al. (2012) found similar results and suggested 
that vigorous accessions also quickly exhaust starch reserves 
under prolonged drought, resulting in a greater decline in 
biomass production compared with less vigorous accessions. 
Collectively, these studies support the observed negative 
correlation between plant size and drought sensitivity (as 
assessed with TOI), and suggest a trade-off between vig-
orous growth and the maintenance of growth in prolonged 
drought stress. Further studies are necessary to determine 
whether these relationships can be decoupled, or to identify 
the optimal balance between these two attributes.

Leveraging the genome-enabled growth model for 
candidate gene discovery

The hierarchical Bayesian framework developed by Onogi 
et al. (2016) provides a powerful approach to improve the es-
timation of model parameters and to estimate the genomic 
contributions to the model parameters. Since the model 
parameters are regressed on genome-wide SNP markers, 
this framework provides a means to identify important loci 
that influence trait trajectories (i.e. GWAS). While the initial 
study by Onogi et al. (2016) showed both applications of the 
approach, their primary objective was genomic prediction. 
Here, we leveraged the genome-enabled growth modeling 
approach to identify genomic regions that influence dy-
namic drought responses.

Many of the model parameters show a complex genetic 
architecture characterized by many loci with small effects 
(Fig. 5). However, several notable regions exhibiting relatively 
large effects were identified that harbored potential candi-
date genes. For instance, two notable peaks were identified on 
chromosomes 1 and 4 for the parameter α in drought con-
ditions (Fig. 5F). Both regions harbored candidate genes that 
have been reported to regulate drought and/or osmotic stress 
responses in plants. The region on chromosome 4 harbored 
a gene that is known to regulate chilling tolerance in rice, 
COLD1 (Ma et al., 2015). COLD1 was shown to be involved 

with the Ca2+ signaling response to cold stress. In Arabidopsis, 
the COLD1 orthologs, GTG1 and GTG2, are membrane-
bound abscisic acid receptors (Pandey et  al., 2006, 2009). 
However, COLD1 exhibits GTPase activity that is absent in 
GTG1/2 (Ma et  al., 2015). Thus, further studies are neces-
sary to determine whether COLD1 participates in drought 
responses.

In addition to the candidate genes associated by model 
parameters, whole-genome regression performed with TOI 
in drought conditions revealed a potential role for additional 
genes in the genetic regulation of the timing of growth re-
sponses to drought (Fig. 6). An aquaporin gene, OsPIP1;1, was 
identified within a prominent peak on chromosome 2 associ-
ated with TOI in drought conditions. Aquaporins are a large 
family of proteins that were initially reported to act as water 
transporters, but have since been shown to also transport CO2 
and H2O2 (Dynowski et al., 2008; Uehlein et al., 2003; Bienert 
and Chaumont, 2014; Maurel et  al., 2015; Wang et  al., 2016; 
Rodrigues et  al., 2017). Aquaporins have received consid-
erable attention as a potential target to modify whole-plant 
water transport and improve water status during drought stress 
(Sadok and Sinclair, 2009; Devi et  al., 2012; Choudhary and 
Sinclair, 2014; Schoppach et  al., 2014; Grondin et  al., 2016). 
Work by Grondin et al. (2016) showed that aquaporins account 
for ~85% of root hydraulic conductivity in rice under drought 
stress, and demonstrated that the expression of PIP1;1 is in-
duced by drought stress.

Concluding remarks

Improving drought tolerance in rice is a challenging objective. 
Efforts to improve drought tolerance are hindered by the 
heterogenity in drought-prone environments, the breadth and 
complexity of traits underlying drought adaptation, and the dif-
ficulty in characterizing large populations for these traits. Recent 
advances in phenotyping technologies have provided an ef-
fective means to measure morpho-physiological traits frequently 
throughout the growing season, and provide plant breeders and 
geneticists with dense phenotypic data describing complex re-
sponses. However, these technological advances must be coupled 
with frameworks that accommodate these multidimensional data 
sets, while providing a means to leverage high density geno-
typic data to predict phenotypes and novel biological inference. 
In this context, the genome-enabled growth model proposed 
is a significant advancement towards addressing this need. The 
WSI-Gomp model provides a simple, biologically meaningful 
framework that can describe complex temporal responses using 
few parameters. Moreover, since genome-wide markers are used 
to estimate model parameters, the inferred marker effects can be 
used to identify genes that may contribute to these responses, 
estimate genetic values for model parameters for known individ-
uals, as well as predict the phenotypes for new, uncharacterized 
individuals. Thus, these data can both be leveraged for genetic 
inference of complex drought responses, and make selections 
based on model parameters. This study is the first to leverage a 
genome-enabled growth model for genomic inference in rice, 
and provides novel insights into the basis of dynamic growth re-
sponses to drought stress.
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Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Predicted shoot growth trajectories from the WSI-

Gomp model with varying model parameters.
Dataset S1. Raw phenotypic data for all 349 accessions used 

to fit the WSI-Gomp model.
Dataset S2. Model parameter and time of inflection estimates 

for all 349 accessions obtained from the WSI-Gomp model.
Dataset S3, Marker effects for GWAS for model parameters 

and time of inflection.
Dataset S4. Candidate genes for model parameters and time 

of inflection.

Data availability

All data and codes used in this study can be accessed at https://
github.com/malachycampbell/RiceCGM/tree/master.
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