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science notesThe Plant Genome

A plant’s phenotype at any given time is the mani-
festation of numerous biological processes that have 

occurred prior to the capture of the phenotype. In most 
genetic mapping studies, plants are phenotyped at one or 
few discrete time points. Though this may be sufficient for 
end point traits, such as yield or grain quality, other agro-
nomically important traits such as plant height or vigor 
are not static and vary continuously throughout develop-
ment. Given the dynamic nature of these traits, it is likely 
that some genes will make a time-dependent contribu-
tion to the phenotype. Approaches that consider such 
infinite-dimensional traits as static fail to fully capture 
the dynamic processes that have led to the phenotype and 
may not uncover the contributions of time-specific loci.
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ABSTRACT  Understanding the genetic basis of dynamic 
plant phenotypes has largely been limited because of a lack 
of space and labor resources needed to record dynamic traits, 
often destructively, for a large number of genotypes. However, 
the recent advent of image-based phenotyping platforms has 
provided the plant science community with an effective means 
to nondestructively evaluate morphological, developmental, 
and physiological processes at regular, frequent intervals for a 
large number of plants throughout development. The statistical 
frameworks typically used for genetic analyses (e.g., genome-
wide association mapping, linkage mapping, and genomic 
prediction) in plant breeding and genetics are not particularly 
amenable for repeated measurements. Random regression (RR) 
models are routinely used in animal breeding for the genetic 
analysis of longitudinal traits and provide a robust framework 
for modeling trait trajectories and performing genetic analysis 
simultaneously. We recently used a RR approach for genomic 
prediction of shoot growth trajectories in rice (Oryza sativa L.) 
from 33,674 single nucleotide polymorphisms. In this study, 
we have extended this approach for genetic inference by 
leveraging genomic breeding values derived from RR models 
for rice shoot growth during early vegetative development. This 
approach provides improvements over conventional single time 
point analyses for discovering loci associated with shoot growth 
trajectories. The RR approach uncovers persistent as well as time-
specific transient quantitative trait loci. This methodology can be 
widely applied to understand the genetic architecture of other 
complex polygenic traits with repeated measurements.
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core ideas

•	 Random regression models are an appealing 
framework for genome-wide association studies 
(GWAS) of longitudinal traits

•	 This approach provides improvements over 
conventional single time point analyses for GWAS.

•	 We identify quantitative trait loci with transient and 
persistent effects on shoot growth in rice.

•	 This is the first application of random regression 
models for GWAS of longitudinal traits in crops.

Abbreviations:  BLUP, best-linear unbiased prediction; GEBV, genomic 
estimated breeding value; GWAS, genome-wide association study; PSA, 
projected shoot area; QTL, quantitative trait loci; DAT, days after transplant; RR, 
random regression; SNP, single nucleotide polymorphism; TP, single time point
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Recording phenotypic measurements across develop-
ment in genetic mapping populations is typically limited 
because of the high space and labor demands needed 
to record a trait, often destructively, for a large number 
of genotypes. However, with the advent of image-based 
phenotyping platforms, researchers can now capture mor-
phological, developmental, and physiological processes 
nondestructively with higher temporal resolution for a 
large number of plants (Fraas and Lüthen, 2015; Simko et 
al., 2016; Shakoor et al., 2017; Tardieu et al., 2017; Araus et 
al., 2018). Moreover, the growth of the unmanned aerial 
vehicle industry in recent years has provided many low-
cost hardware options that can be outfitted with cameras, 
facilitating the collection of temporal phenotypes in field 
settings (Yang et al., 2017). Although the use of these 
platforms is becoming more routine in plant genetics, the 
statistical frameworks typically used for genetic analyses 
(e.g., genome-wide association mapping, linkage mapping, 
and genomic prediction) in plant breeding and genetics 
are not amenable for longitudinal traits.

Several studies in recent years have sought to elu-
cidate the genetic basis of longitudinal traits through 
genome-wide association studies (GWAS) or linkage 
mapping. For instance Moore et al. (2013) and Würs-
chum et al. (2014) used linkage mapping at discrete 
time points to identify time-specific quantitative trait 
loci (QTL) associated with root gravitropism and plant 
height, respectively. Though these approaches may be 
effective, because they consider the phenotype at only 
a single time point, they do not leverage the covari-
ance among time points and may have reduced statisti-
cal power compared with approaches that consider the 
entire trait trajectory in regression modeling. Several 
studies have leveraged a “two-step” approach for func-
tional association mapping (Bac-Molenaar et al., 2015; 
Campbell et al., 2017). In the two-step approach, a 
nonlinear function is fitted to phenotypic records for 
each genotype that summarizes the trait trajectories by 
using a few parameters. These parameters are then used 
as derived phenotypes in subsequent GWAS analyses. 
However, with these two-step approaches, information is 
lost between the curve fitting and genetic analysis steps. 
The residuals from the first curve-fitting step are likely 
to contain important information regarding persistent 
environmental effects that are not considered in subse-
quent genetic analysis. We hypothesize that an approach 
that unifies the curve fitting and genetic analysis into 
a single framework is likely to be better than the single 
time point (TP) or two-step longitudinal approaches.

Random regression models provide a robust frame-
work for modeling trait trajectories and performing 
genetic analysis simultaneously (Schaeffer and Dekker, 
1994; Huisman et al., 2002; Schaeffer, 2004; Sun et al., 
2017). Covariance functions, such as spline or polyno-
mial functions, are used to model trait trajectories for 
each line and are sufficient to capture the covariance 
across time points while estimating fewer parameters 
(Kirkpatrick et al., 1990, 1994; Meyer, 1998; White et 

al., 1999; Strabel and Misztal, 1999; Pool and Meuwis-
sen, 2000; Huisman et al., 2002; Schaeffer, 2004; Misztal, 
2006; Sun et al., 2017). In a recent study, Sun et al. (2017) 
used a RR approach with cubic splines in wheat (Triticum 
aestivum L.) to obtain best linear unbiased predictions 
of secondary traits derived from high-throughput hyper-
spectral and thermal imaging. Regression coefficients 
are treated as random effects, and therefore allow the 
values to vary between individuals. Genomic estimated 
breeding values (GEBVs) for regression coefficients are 
obtained through a mixed model, and using simple alge-
bra, GEBVs can be obtained for any time throughout the 
continuous trait trajectory (Mrode, 2014).

Genomic estimated breeding values represent the 
summation of all additive genetic effects across the genome 
for a given individual. Goddard (2009) showed that GEBVs 
predicted from genomic relationships [e.g., genomic best 
linear unbiased prediction (BLUP)] are equivalent to those 
predicted from regression on markers. Given this equiva-
lence, marker effects can be easily calculated from GEBVs 
and thus genetic inference (e.g., GWAS) can be performed. 
Although this approach is different from conventional sin-
gle-marker regression GWAS approaches, it offers several 
advantages. First, hundreds of thousands of statistical tests 
are typically run for single-marker regression GWAS; as a 
result, a stringent p-value threshold must be used to limit 
false discoveries (Hayes, 2013). Thus, loci recovered via sin-
gle-marker regression GWAS approaches typically account 
for only a fraction of the total genetic variance for a trait 
(Yang et al., 2010). Whole-genome BLUP approaches [e.g., 
single nucleotide polymorphism (SNP)-BLUP or genomic 
BLUP] assume an infinitesimal model in which all loci 
make some, albeit small, contribution to the phenotype 
(Hayes, 2013). Thus, when we consider all markers simulta-
neously, small-effect QTL are recovered and more genetic 
variation can be captured than in single-marker regression 
GWAS (Yang et al., 2010). Best linear unbiased prediction 
approaches shrink the marker effects toward zero and thus 
may not be appropriate for simple traits that are regulated 
by few loci with large effects. However, for complex poly-
genic traits, these assumptions are reasonable and should 
yield biologically meaningful results. In the case of RR, 
GEBVs can be calculated at each time point and can be 
leveraged to examine the contribution of loci across a trait 
trajectory or the time axis.

In a recent study, we used a RR approach for genomic 
prediction of shoot growth trajectories in rice (Campbell 
et al., 2018). The use of longitudinal phenotypes with RR 
captured greater genetic variation than the TP approach 
and significantly improved prediction accuracy. In the 
current study, we have leveraged GEBVs derived from 
RR models to examine the genetic architecture of shoot 
growth through a 20-d period during early vegetative 
development. We show that this approach can be used for 
genetic inference of shoot growth trajectories and uncov-
ers persistent as well as time-specific QTL. Furthermore, 
we show that the RR approach uncovers considerably 
more associations than a conventional TP analysis.
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MATERIALS AND METHODS

High-Throughput Phenotyping
Phenotypic data was collected for 357 diverse rice acces-
sions from the Rice Diversity Panel 1 (Zhao et al., 2011). 
The plant materials, experimental design, and image pro-
cessing are described in detail in Campbell et al., (2018). 
Briefly, 378 lines were phenotyped at the Plant Accelera-
tor, Australian Plant Phenomics Facility, at the Univer-
sity of Adelaide, SA, Australia, from February to April 
2016. In this period, three experiments were conducted, 
where experiment consisted of a partly replicated design 
with 54 randomly selected lines that had two replicates 
in each experiment. The plants were grown on green-
house benches for 10 d after transplanting (DAT) and 
were loaded on the imaging system and watered to 90% 
field capacity at 11 DAT.

The plants were imaged daily from 13 to 33 DAT 
with a visible (red–green–blue) camera (Pilot piA2400–
12 gc, Basler, Ahrensburg, Germany) from two side-view 
angles separated by 90° and a single top view. Lem-
naGrid software was used to extract plant pixels from the 
red–green–blue images via a color classification strategy. 
Noise (i.e., small areas of nonplant pixels) in the image 
was removed with a series of erosion and dilation steps. 
Projected shoot area (PSA) was calculated as the sum of 
the plant area projected in two-dimensional space from 
each of the three RGB images and was used as a measure 
of shoot biomass. Previous studies have shown a high 
correlation between PSA and conventional destruc-
tive measures of shoot biomass (Golzarian et al., 2011; 
Campbell et al., 2015; Neilson et al., 2015; Knecht et al., 
2016). A depiction of PSA collected from RGB images 
is provided as Supplemental Figure S1. Outlier plants 
at each time point were detected via the 1.5 interquar-
tile range rule. Briefly, the distribution of PSA each day 
was split into quartiles and the interquartile range was 
calculated as the difference between the third and first 
quartiles. Points that were either less than Quartile 1 – 
1.5 interquartile range or greater than Quartile 3 + 1.5 
interquartile range were considered as outliers. Outliers 
were plotted and those that exhibited abnormal growth 
patterns were removed. A total of 2604 plants remained 
for downstream analyses.

Predicting Genomic Breeding Values

Random Regression
Trajectories for PSA across the 20 time points were mod-
eled with a RR model with Legendre polynomials. The 
model is the same as was used for genomic prediction in 
Campbell et al., (2018). The model is described below in 
the notation of Mrode (2014):

2 2 1

0 0 0

PSA ( ) ( ) ( )tij jtk k jtk jk jtk ik tij
k k k

t t u t s e
= = =

=m+ f b + f + f +å å å ,  [1]

where PSAtij is PSA on Day t for Line j within Experi-
ment i, kb  is the fixed second-order Legendre polynomial 

used to model the mean PSA trajectory for all lines, ujk 
and sik are the kth random regression coefficients for addi-
tive genetic effect and random experiment effects, and tije  
is the random residual. The order of b was selected on the 
basis of visual inspections of the PSA over the 20 d. The 
random additive genetic effects (u) are modeled by a sec-
ond-order Legendre polynomial and the experiment effects 
(s) are modeled by a first-order Legendre polynomial.

In matrix notation, the model is:

,e= + + +y Xb Zu Qs   [2]

where y is a vector of PSA over the 20 d and is of order 
n, where n is the number of observations. X is an fn k´  
covariable matrix where the number of columns is equal 
to the order of Legendre polynomials used to model 
fixed effects (kf). The matrices Z and Q are covariable 
matrices for the random additive genetic and random 
experimental effects, respectively. The number of rows 
for Z is n and the number of columns corresponds to the 
number of lines used multiplied by the order of the Leg-
endre polynomial used to fit the additive genetic effect 
( 357 3 1071gq k´ = ´ = ). The dimension of Q is sn e k´ ´ , 
where ks is the order of the Legendre polynomial used 
to fit the permanent environmental effects and e is the 
number of experiments. We assume that u

 N 0,G⊗( )Ω , 
(0, )N~ Äs I P , and (0, )N~ Äe I D . Here, Ω and P are the 

covariance matrices for the RR coefficients for the addi-
tive genetic and permanent environmental effects, and D 
is a diagonal matrix that allows for heterogeneous vari-
ances over the 20 time points.

A genomic relationship matrix (G) was calculated 
using VanRaden (2008):

'
m

= sc scW W
G ,  [3]

where scW  is a centered and scaled q × m matrix, where 
m represents 33,674 SNPs. The variance components and 
genomic BLUPs were obtained via ASReml version 4.0 
(Gilmour et al., 2015).

Solving the mixed model equation will give three 
RR coefficients for each line. With these RR coefficients, 
GEBVs at each time point can be obtained. For line j, the 
predicted GEBVs at each time point are given by GEBVj = 
Φg ˆ

ju  (Mrode, 2014). Φg is the matrix of Legendre poly-
nomials of time covariates. A detailed explanation of the 
RR model is provided in the Supplemental Methods.

Single Time Point Analysis
The following mixed model approach was used to fit 
genomic BLUPs at each time point:

,= + + +y Xb Zu Qs e   [4]

The matrices X, Z, and Q correspond to incidence 
matrices for the fixed, random additive genetic, and 
random experimental effects, respectively. Moreover, 
the dimensions for X, Z, and Q are 1n´ , n q´ , and n e´ . 
We assume the random terms are distributed as follows 

2(0, )gN~ su G , 2(0, )sN~ ss I , and 2(0, )eN~ se I . A genomic 
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relationship matrix (G) was calculated as above and used 
for predicting breeding values at each time point.

Genome-wide Association Analyses

Estimating Marker Effects from GEBVs
The GEBVs ( û ) can be parameterized as u Wsc

 =β , where 
scW  is a matrix of marker genotypes, as defined above, 

and b̂  is a vector of allele substitution effects. b  can be 
obtained from BLUPs as follows:

1
2

1 1
2

ˆ( ) ' e

g

BLUP
-

- -
é ùsê ú= +ê úsê úë û

b scW G I G y ,  [5]

where 2
gs  and 2

es  are the genetic and residual variances, 
respectively (Morota and Gianola, 2014).

The BLUP of GEBVs is:
1

2
1

2
ˆ( ) ,e

g

BLUP
-

-
é ùsê ú= +ê úsê úë û

u I G y   [6]

The BLUP of marker effects can be obtained via the 
following linear transformation:

1ˆ ˆ( ) ' ( ).BLUP BLUP-= scW G ub   [7]

This relationship was leveraged to solve for marker 
effects from breeding values at each time point for both 
RR and TP analyses.

Variance of SNP Effects
The variance of marker effects was calculated following 
the methods outlined by Duarte et al. (2014). Briefly, the 
variance of the marker effects can be obtained via linear 
transformation of the variance of GEBVs ( û ) as follows:

1

1 1

ˆVar( ) Var( ' )ˆ

ˆ' Var( )

-

- -

b =

=
sc

sc sc

u

u

W G

W G G W
.  [8]

The prediction error variance (PEV) of û  is:
22

2

ˆ ˆPEV( ) Var( ) Var( )
ˆVar( )gσ

= = −
= −

u C u u
G u ,  

[9]

where 22C  is obtained by inverting the coefficient matrix 
of the mixed model equation (provided in the Supple-
mental Methods) and extracting the elements corre-
sponding to additive genetic effects (Henderson, 1984). 
Thus by rearranging Eq. [9] for ˆ PEV( )u , the variance of 
the predicted breeding values is

2 22 2ˆVar( ) g e= s - su G C .  [10]

For the TP approach, 22C  is a q q´  matrix, and diag-
onal elements correspond to the prediction error vari-
ance of breeding values. Since the mixed model equation 
is solved for each time point independently, this proce-
dure can be used to obtain the variance of SNP effects on 
each day. However for the RR approach, 22C  is (q × kg) × 

(q × kg) and represents the prediction error variance for 
the additive genetic RR coefficients. Therefore, to obtain 

ˆVar( )u  at each time point, we define a new matrix 22*C , 
namely (q × d) × (q × d), where d is the number of time 
points (e.g., 20). This is given by:

C Cg g
22 22* * *= ′F F ,  [11]

where Fg
*  is a (q × d) × (kg × d) block matrix, in which the 

diagonal submatrices consist of Legendre polynomials at 
each standardized time interval. This approach is analo-
gous to that described by Mrode (2014) and is described 
in greater detail in the Supplemental Methods.

Obtaining P-Values for Marker Effects
The SNP effects for SNPj at time t were divided by their 
corresponding Var ( b ) values according to:

SNP
Var( )

jt
b

=
b





.  [12]

The p-values for marker effects were calculated as 1 
minus the cumulative probability density of the absolute 
value of SNPjt. This number was subsequently multiplied 
by 2. This is summarized as follows.

value 2(1 (|SNP |)).
jtSNP jtp- = -f   [13]

In line with Zhao et al. (2011), a threshold of 41 10-´  
was used to define significant loci.

Data Accessibility
The full datasets and all code used in this study are avail-
able via GitHub (https://github.com/malachycampbell/
Leveraging-RR-GEBVs-for-genomic-inference-of-longi-
tudinal-traits, accessed 15 Apr. 2019) and the Wheat and 
Rice Center for Heat Resilience website (WRCHR.org).

RESULTS AND DISCUSSION
To identify loci associated with shoot growth trajectories 
in rice, we used a novel RR approach that allows trait tra-
jectories to be modeled across time points. Shoot growth 
trajectories were recorded for 357 diverse rice accessions 
over a period of 20 d during early vegetative growth (13–33 
DAT). A RR model was fitted to the shoot growth tra-
jectories, which included a fixed second-order Legendre 
polynomial, a random second-order Legendre polynomial 
for the additive genetic effect, a first-order Legendre poly-
nomial for the environmental effect, and heterogeneous 
residual variances. Genomic estimated breeding values 
were predicted for each accession at each of the 20 time 
points as described in Campbell et al. (2018) and were used 
to estimate marker effects at each time point (Supplemen-
tal File S1). The results from the RR were compared with a 
conventional TP approach in which GEBVs were predicted 
at each time point via a conventional mixed model and 
were used to estimate the marker effects.
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Random Regression GWAS Recovers More Significant 
Associations and Increases Predicted Marker Effect Sizes
With RR models, incorporating the covariance struc-
ture of multiple measurements should lead to a more 
accurate partitioning of phenotypic variation into the 
genetic and environmental components, and improve 
genetic inference. To demonstrate the advantages of 
a longitudinal genetic inference approach over a con-
ventional TP approach, significant marker effects were 
compared between the RR and TP approaches (Fig. 1). A 
131% increase in the number of significant associations 
(p < 10–4) was observed with the RR approach compared 
with the conventional TP model (Fig. 2). A total of 442 

SNPs were found to be significantly associated with shoot 
growth trajectories at one or more time points in the RR 
approach, whereas 191 were found in the TP approach. 
Correlations in SNP effects and –log10(p)-values estimated 
via the two approaches showed very high agreement 
(r = 0.85 and 0.79, respectively); however, the predicted 
marker effects ( b ) obtained with the RR were consider-
ably larger than the TP analysis (Fig. 1). For instance, b  
for the RR approach ranged from –299.1 to 295.0 across 
all days, whereas for the TP approach, b  ranged from 
–104.6 to 112.3. These differences are evident in the dis-
tribution of marker effects pictured in Fig. 1. Manhattan 
plots for each of the 20 time points is provided as Supple-
mental Fig. S2, Supplemental Fig.S3, Supplemental Fig. 
S6, and Supplemental Fig. S7. The corresponding Q–Q 
plots are provided as Supplemental Fig. S4, Supplemental 
Fig. S5, Supplemental Fig. S8, and Supplemental Fig. S9. 
These results indicate that the use of information across 
all time points with the RR approach improves the ability 
to detect significant associations and also increases the 
predicted marker effect sizes compared with a model that 
uses information at only a single time point.

These results suggest that the inclusion of the time 
axis for genetic inference will improve the ability to 
recover significant associations. Several other studies have 
shown similar improvements in the estimation of variance 
components and genetic inference via different approaches 
for longitudinal traits. For instance, De Andrade et al. 
(2002) showed a longitudinal approach that leveraged ped-
igree data and systolic blood pressure measurements col-
lected at three time points improved heritability estimates 
compared with a TP approach. In the context of GWAS, 
Das et al. (2011) used a novel functional GWAS approach 
and identified several new variants associated with body 
mass index collected at four time points in humans. More-
over, by using simulated data, the authors showed that the 
statistical power exceeded 0.8, with a false positive rate of 
less than 0.1 for sample sizes greater than 1000. Similar 
gains for GWAS have been demonstrated in plants, ani-
mals, and humans (Xu et al., 2014; Campbell et al., 2015; 
Yi et al., 2015; Lund et al., 2008).

Random Regression GWAS Reveals the Dynamic 
Genetic Architecture of Shoot Growth Responses in Rice
For many traits, such as growth, genetic effects are 
expected to vary across time. These temporal genetic 
effects can be effectively captured by a RR approach. 
To examine the dynamic genetic architecture of shoot 
growth trajectories, significant SNPs from the RR 
approach were selected and those within a 200-kb win-
dow were merged to a single QTL. The 200-kb window 
that we used corresponded to the average linkage dis-
equilibrium in rice (Zhao et al., 2011; Huang et al., 2010). 
For the RR approach, 26 significant QTL were detected 
at one or more time points; for the TP approach, only 15 
significant QTL were detected (Supplemental File S1).

To dissect the dynamic genetic architecture of shoot 
growth in rice, significant QTL were classified into four 

Fig. 1. Correlation and distribution of SNP effects from random 
regression (RR) and single time point (TP) analysis. (A) Correlation 
between SNP effects for the RR ( bRR ) and TP analyses ( bTP ). Single 
nucleotide polymorphisms (SNPs) highlighted in red are those that 
were statistically significant in the RR approach (p < 1 × 10–4). The 
gray broken lines depict a one-to-one relationship between bRR

 and 
bTP . The distribution of SNP effects across all 20 time points from (B) 
the TP analyses and(C) RR analysis.



6 of 8 the plant genome  vol. 12, no.  2  july 2019

categories: persistent QTL (QTL detected at all 20 time 
points), long-duration QTL (those with significant asso-
ciations at more than 12 but fewer than 20 time points), 
mid-duration QTL (QTL with associations at 6 to 12 
time points), and short-duration QTL (those with associ-
ations at fewer than six time points). Of these categories, 
far more persistent QTL were detected, with a total of 
13 observed at all 20 time points (Fig. 3). Short-duration 
QTL also showed the smallest number of significant 
QTL (two); five and six QTL were detected for long and 
mid-duration QTL, respectively. The frequencies of sig-
nificant QTLs for each category were calculated at each 
time point and plotted as a function of time (Supple-
mental Fig. S10). The majority of long-duration QTL 
were detected toward the end of the experiment (Day 8 
onward), whereas short-duration QTL were detected only 
from Days 1 to 4. Mid-duration QTL were detected at all 
time points. The p-values across all 20 time points for all 
significant QTL are provided in Supplemental Fig. S2 and 
Supplemental Fig. S3. Collectively, these results indicate 
that the shoot growth is regulated by numerous loci that 
have both transient and persistent effects throughout 
early vegetative growth.

The importance of time-specific QTL has been dem-
onstrated in both plants and animals (Moore et al., 2013; 
Bac-Molenaar et al., 2015; Campbell et al., 2015, 2017). 
For instance, by using a TP linkage mapping approach, 
Moore et al. (2013) showed several time-specific QTL 
associated with root gravitropic responses in Arabi-
dopsis thaliana (L.) Heynh. Moreover, many of these 

QTL harbored candidate genes known to influence root 
growth, root gravitropism, or hormone transport and 
signaling. Bac-Molenaar et al. (2015) collected rosette 
growth trajectories over a period of 20 d for a diverse 
panel of 324 A. thaliana accessions. A growth function 
was fitted for each accession and the model parameters 
were used for GWAS. The authors showed that many 
associations detected for model parameters were also 
detected at a few time points via a TP GWAS approach. 
Although few longitudinal studies have been performed 
in rice, our previous studies have identified time-specific 
QTL for shoot growth and salt stress responses (Camp-
bell et al., 2015, 2017).

CONCLUSION
New phenotyping platforms have provided the plant 
science community with a suite of tools to collect high-
dimensional temporal phenotypic data. With these 
temporal datasets, quantitative genetic approaches that 
can leverage the covariance across time points must be 
fully utilized to realize the potential of these data for 
genomic prediction and genetic inference. In this study, 
we show that the RR framework that has been extensively 
developed in animal breeding can be extended to genetic 
inference in plants. This approach can be used effectively 
to identify QTL with time-specific effects. To date, this is 
the first application of RR models for genetic inference of 
a longitudinal trait in a major crop.

Fig. 2. Manhattan plots for random regression (RR) and single time point (TP) approaches on Days 1 and 20. (A,B) Manhattan plots for the RR 
approach on Days 1 and 20, respectively. (C,D) Manhattan plots for the TP approach on Days 1 and 20, respectively. –log10(p) is shown on 
the y-axis. Statistically significant single nucleotide polymorphisms are highlighted in red (p < 1 × 10–4).
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Supplemental Materials

Supplemental File S1. Results of the GWAS. P-values are 
provided for each all SNPs at each time point for the RR 
and TP approaches.

Supplemental Fig. S1. Visual depiction of the process 
of assessing shoot biomass from PSA. 

Supplemental Fig. S2. Manhattan plots for the RR 
approach at Days 1 to 10. 

Supplemental Fig. S3. Manhattan plots for the RR 
approach at Days 10 to 20. 

Supplemental Fig. S4. Q–Q plots for the RR 
approach at Days 1 to 10. 

Supplemental Fig. S5. Q–Q plots for the RR approach 
at Days 11 to 20. 

Supplemental Fig. S6. Manhattan plots for the TP 
approach at Days 1 to 10. 

Supplemental Fig. S7. Manhattan plots for the TP 
approach at Days 11 to 20. 

Supplemental Fig. S8. Q–Q plots for the TP approach 
at Days 1 to 10. 

Supplemental Fig. S9. Q–Q plots for the TP approach 
at Days 11 to 20. 

Supplemental Fig. S10. Frequency of time-specific 
QTL, where frequency was determined by dividing the 
number of QTL detected at time t by the total number of 
QTL for a given class.

Supplemental Methods. Detailed explanation of the 
RR approach and how exact P-values were obtained for 
marker effects from RR-derived GEBVs. 
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